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Abstract. Motivated by the challenge of moment recovery in hydrodynamic
approximation in kinetic theory, we propose a data-driven approach for

the hydrodynamic models. Inspired by continuous data assimilation, our

method introduces a relaxation-based nudging system coupled with a novel
discretization technique. This approach facilitates the simultaneous recovery

of both the force term and a high-resolution solution from sparsely observed

data. To address potential numerical artifacts, we use kernel regression to fit
the observed data. We also analyze the convergence of the proposed nudging

system under both full and partial data scenarios. When applied to moment

systems, the source term involves the derivative of higher-order moments, and
our approach serves as a crucial step for data preparation in machine-learning

based moment closure models. Multiple numerical experiments demonstrate
the effectiveness of our algorithm, and we discuss its potential extension to

high-dimensional systems.
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1. Introduction

When modeling complicated physics processes, an accurate description can be
provided at the mesoscopic scale using kinetic-type governing equations:

(1.1)
∂

∂t
f + v · ∇xf + F · ∇vf = Q(f, f), (x,v, t) ∈ R3 × R3 × R+ .

Here f(x,v, t) is the distribution function that describes particles within a physical
system, where x is the position, v is the velocity and t is the time. F is the
external force, which, for example, can take the form F = q(E + v × B) when
modeling charged particles in plasma. Here q is the charge per unit mass of the
particles, while E and B denote the strengths of the electric and magnetic fields,
respectively. Q(f, f) is the collision operator that encapsulates the interactions
between particles.

While significant progress has been made in developing computational methods
for solving (1.1), such as finite difference or finite element methods, in industrial
applications like fusion energy simulations, these grid-based methods are still
cursed by dimensionality. To reduce the computational cost while maintaining
important physical features, an attractive approach is to simulate the dynamics
at the hydrodynamic scale, which is the primary motivation behind the moment
method. To explain, by taking the zeroth and the first v−moments of the equation
(1.1), one obtains the following hydrodynamic system:

(1.2)


∂

∂t
ρ+∇ · (ρu) = 0 ,

∂

∂t
ρu+∇ · (ρu⊗ u) = −∇ · P+ ρq(E+ u× B) ,

where the density ρ, the momentum ρu, and the pressure tensor P are given by

ρ(x, t) :=

∫
f(x,v, t)dv,

ρu(x, t) :=

∫
vf(x,v, t)dv,

P(x, t) :=
∫
(v − u(x, t))⊗ (v − u(x, t))f(x,v, t)dv.

Clearly, the hydrodynamic system (1.2) resides in a 4-dimensional space: 3 for x
and 1 for t, making it more computationally friendly than the original 7-dimensional
kinetic equation (1.1). However, this reduction comes at a price–the system is not
closed. Specifically, P depends on the second moments of f , which cannot be written
solely as a function of the zero-th and first moment of f , i.e., ρ and ρu. One way

to close this system is to assume f is near the Maxwellian, i.e., f ∝ ρ exp− |v−u|2
2T

. However, this approximation holds true only in certain regimes where collisional
effects dominate [5]. In general, one can derive a larger moment system that evolves
more moments, aiming to approximate the original kinetic equation more closely,
but the closure problem persists [8, 9].
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In this paper, we aim to address this problem with the help of observational
data. In particular, we reformulate this closure problem into a force-identification
problem:
(1.3)

∂

∂t
U(x, t) +∇ · F (U(x, t)) = G(x, t) + S(U,x, t) ,

U(x, 0) = U0(x) ,

x ∈ Ω ⊆ Rd, t ≥ 0.

Here U(x, t) = (U0(x, t), U1(x, t), · · · , UN (x, t))⊤ ∈ RN are the solution states.
The flux, F (U), and the source term, S(U,x, t), are assumed to be known from the
physics, whereas the forcing term G(x, t) is to be determined. In the context of
moment recovery, the force function takes the divergence form G = −∇ ·M, where
the tensor M ∈ Rd×N contains the information of the moment one order higher
than UN . Indeed, the system (1.2) can be written in the form of (1.3) with

U =

[
ρ
ρu

]
, F =

[
ρu

ρu⊗ u

]
, G = −∇ ·

[
0
P

]
, S =

[
0

ρq(E+ u⊗ B)

]
.

If the solution state U(x, t) and its gradients are known continuously in space and

time, then the forcing term can be computed with G =
∂U

∂t
+∇ · F − S. However,

in many real-world applications such as weather prediction, one may only have
access to a limited amount of true data at sparse and/or non-uniform observation
points, xob

j , j = 1, 2, · · · , Nob, which may not be sufficient to recover the solution
gradients with the desired accuracy. Additionally, due to the limited observations,
the governing equation (1.3) may not be initialized accurately. This limitation can
sometimes lead to a severe accumulation of errors when making future predictions.
All of these challenges underscore the pressing task:

Given only sparse observations {U(xob
j , t)}, can we simultaneously recover G and

obtain an enhanced resolution of the solution U(x, t) in (1.3)?

To fulfill this task, we propose the following nudged system:

(1.4a)


∂

∂t
V (x, t) +∇ · F (V (x, t)) = G̃(x, t) + S(V,x, t) + µ(Ih(U)− Ih(V )) ,

V (x, 0) = V0(x) .

Here Ih(·) is the interpolation operator, which is a bounded linear operator that
interpolates the observed data into a smooth function, i.e., Ih : {(xob

j , U(xob
j ))} 7→

Ih(U)(x) ∈ C∞(Ω). h represents the mesh size of observation grids {xob
j }. The

approximate force G̃ is constructed with

(1.4b) G̃ =
∂

∂t
Ih(U) + Ih(∇ · F (Ũ)− S(Ũ)), Ũ = Ih(U) + (I − Ih)(V ).

In the particular case where Ih is a projection, we have I2h = Ih. Note that ∂tIh =

Ih∂t and Ih(Ũ) = Ih(U), (1.4b) can also be written as

G̃ = Ih(
∂

∂t
Ũ +∇ · F (Ũ)− S(Ũ)).

Compared with the exact dynamics (1.3), the nudged equation (1.4a) includes
an additional relaxation term, µ(Ih(U)− Ih(V )), which serves as a feedback control
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from the observations Ih(U). The user-tuning parameter µ > 0 is known as the
nudging coefficient. With an appropriate choice of Ih, the approximate solutions

V and G̃ are expected to be time-asymptotically accurate, namely, V
t→∞−→ U and

G̃
t→∞−→ G in certain norms.
We note that the concept of introducing feedback control into the system (1.4a)

is inspired by the continuous data assimilation methods discussed in [34, 16],
which aim to recover the unknown body force in the incompressible Navier-Stokes
equations from low-mode observations. These methods trace back to the earlier
work by Azouani, Olson and Titi [3, 19], which focuses on velocity field recovery
for the two-dimensional Navier-Stokes equations. Extension to the continuous data
assimilation for dynamics with a set of unidentified parameters can be found in
[13, 10, 11, 33, 36]. Investigations have also been carried out for state recovery in
various of hydrodynamic settings, including Rayleigh-Benard convection [15, 17, 2,
14], geophysical fluids [27, 1, 37, 26], and dispersive equations [28, 29].

A major advantage of the Azouani-Olson-Titi nudging framework is that it
allows simultaneous reconstruction of both the solution state U and the unknown
forcing term G. This capability is particularly important in our context, as G
encapsulates the information of truncated higher-order moments, which are the
critical components for accurate system recovery. In comparison, other conventional
data assimilation methods, such as the Kalman filter [30, 40], particle filter [31,
12], and variational assimilation [32, 41, 18], typically assume fully known model
dynamics and are thus primarily designed for state estimation. These methods do
not inherently support the recovery of unknown or partially known dynamics, and
it remains open to explore if they can enable more complicated data recovery tasks
with affordable modifications.

To ensure the convergence of (1.4), we impose the following conditions on Ih:

(1.5a) ||Ih(∂αϕ)||2 ≤ cmh−m||ϕ||2,

(1.5b) ||ϕ− Ih(ϕ)||2 ≤ Cmhm||ϕ||Hm ,

for any multi-index |α| = m withm ≥ 0. The constants cm, Cm > 0 are independent
of h. For example, the spectral projection onto Fourier modes with wave numbers
|k| ≤ 1/h would satisfy the above conditions. In this special case, Ih serves as a
low-pass filter that removes the high-frequency fluctuations, and the intermediate

solution Ũ is obtained with the low-mode observations, Ih(U), corrected by the
high-mode discrepancy, (I − Ih)(V ).

Remark 1.1. In the particular case where the function ϕ has weak oscillations such
that

sup
t≥0

||∇ϕ||2
||ϕ||2

≤ C < ∞,

the error bound (1.5a) can be modified to

(1.6) ||Ih(∇ϕ)||2 ≤ c0||∇ϕ||2 ≤ c0C||ϕ||2.

The h−1 dependence in the error bound for m = 1 is then removed.

Upon the recovery of (the divergence of) the highest moment, an approximate
closure relation may be obtained with machine learning techniques. In particular,
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consider the moment systems of (1.1):

∂mN

∂t
+AN

∂mN

∂x
= gN+1 + SNmN ,

gN+1 = − N + 1

2N + 1
∂xmN+1eN+1,

(1.7)

where mN = (m0,m1, · · · ,mN )⊤, eN+1 = (0, · · · , 0, 1)⊤ and

mk(x, t) =
1

2

∫ 1

−1

f(x, v, t)Pk(v)dv ,

with Pk being the k−th order polynomial. AN and SN are defined in (4.5)
and (4.6). Given observations of the first few moments, e.g., m1, · · · ,ml, the
proposed method allows for the recovery of the higher moments ml+1, · · · ,mN+1.
By using machine learning techniques, such as neural networks, to approximate
the relationship between the gradient of the highest moments and those of the
lower-order moments, one can close the system described by (1.7). For a simple
kinetic equation, such a relation has been learned in a series of works by Huang
et. al. [23, 25, 24] by running an expensive kinetic simulation to generate data
(i.e., f), computing its moments, and then training the neural network on these
moments. In contrast, our proposed method eliminates the need to compute the
full kinetic system, instead providing a cost-efficient mechanism for generating
data for the moment closure task.

The rest of the paper is organized as follows. In Section 2, we first introduce the
main contents of our proposed method, including the convergence analysis of the
nudge system, a novel numerical discretization and a kernel regression approach for
interpolation. Extensive numerical experiments are presented for the validation of
the effectiveness of our algorithm in Section 3. Furthermore, we apply the proposed
approach to the moment system in kinetic theory, aiming to recover higher-order
moments with incomplete observations in Section 4. Finally, in Section 5, we
discuss the potential strategies and challenges in extending the method to higher-
dimensional systems.

2. Our approach: convergence analysis and numerical discretization

This section presents the main approach of this paper, which centers around
(1.4a). In the next subsection, we first analyze the convergence behavior of
(1.4a) under both fully observed data (i.e., when (2.3) is satisfied) and partial
data scenarios (see Proposition 2.3). Subsection 2.2 will then propose an efficient
discretization of (1.4a). The choice of the interpolation operator Ih is then
discussed in section 2.3.

2.1. Convergence analysis.

Proposition 2.1. (Convergence of the state) Let (U,G) be a strong solution of
the equation

(2.1) ∂tU + ∂xU = G+ S(U, x, t),

associated with Lipschitz continuous source term,

|S(U, x, t)− S(V, x, t)| ≤ Ls|U − V |, Ls > 0.
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Let (V, G̃) be a strong solution of the nudged system

(2.2)

 ∂tV + ∂xV = G̃+ S(V ) + µ(Ih(U)− Ih(V )) ,

G̃ = ∂tIh(U) + Ih(∂xŨ − S(Ũ)), Ũ = Ih(U) + (I − Ih)(V ) ,

where Ih satisfies conditions (1.5). Assume that the data are sufficiently observed,
meaning that

(2.3a) ||W (t)− Ih
(
W (t)

)
||2 ≤ Ch e

−εt, W (t) = U(t)− V (t),

(2.3b) Ih
(
G(t)

)
= G(t),

where Ch, ε > 0 are positive constants. Then the nudged solution V (x, t) recovers
the true data U(x, t) at an exponential rate in time,

(2.4) ||U(·, t)− V (·, t)||2 ≤ ||U(·, 0)− V (·, 0)||2 e−(µ−Ls)t + Cµ,h e
−εt,

with Cµ,h = (c1h
−1 + C0Ls + µ)Ch/(µ− Ls − ε).

Remark 2.1. From (2.4), it appears that a larger µ results in faster convergence.
However, in practice, a larger µ imposes stricter constraints on the time step due
to stability considerations.

Proof. Let W = U − V , the difference of (2.1) and (2.2) yields

∂W

∂t
+

∂W

∂x
= G− G̃+ S(U)− S(V ) + µ(W − Ih(W ))− µW.

Take L2−inner product with W on both sides of the equation, we have

1

2

d

dt
||W ||22 = ⟨G− G̃,W ⟩+ ⟨S(U)− S(V ),W ⟩+ µ⟨W − Ih(W ),W ⟩ − µ||W ||22

≤ ||G− G̃||2||W ||2 + ||S(U)− S(V )||2||W ||2 + µ||W − Ih(W )||2||W ||2 − µ||W ||2
≤ ||G− G̃||2||W ||2 + Ls||W ||22 + µ||W − Ih(W )||2||W ||2 − µ||W ||22
= ||G− G̃||2||W ||2 + µ||W − Ih(W )||2||W ||2 − (µ− Ls)||W ||22.

(2.5)

To bound the error ||G− G̃||2, we employ the condition (2.3b) and write

G− G̃ = Ih(G)− G̃

= Ih
(
∂tU + ∂xU − S(U)

)
−
(
∂tIh(U) + Ih(∂xŨ − S(Ũ)

)
= Ih(∂xU − ∂xŨ)− Ih(S(U)− S(Ũ)).

(2.6)

The temporal derivatives are canceled due to Ih∂t(·) = ∂tIh(·). Subsequently, using
conditions (1.5a), (1.5b) leads to

||G− G̃||2 ≤ ||Ih
(
∂x(U − Ũ)

)
||2 + ||Ih

(
S(U)− S(Ũ)

)
||2

≤ (c1h
−1 + C0Ls)||U − Ũ ||2

= (c1h
−1 + C0Ls)||W − Ih(W )||2.

By substituting the above inequality into (2.5) and rearranging, we obtain

d

dt
||W ||2 + (µ− Ls)||W ||2 ≤ (c1h

−1 + C0Ls + µ)||W − Ih(W )||2.(2.7)
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Applying Gronwall’s inequality and employing condition (2.3a) yields

||W (t)||2 ≤
{
||W (0)||2 + (c1h

−1 + C0Ls + µ)

∫ t

0

||W (τ)− Ih
(
W (τ)

)
||2 e(µ−Ls)τdτ} e−(µ−Ls)t

≤ ||W (0)||2 e−(µ−Ls)t +
(c1h

−1 + C0Ls + µ)Ch

µ− Ls − ε
e−εt.

The desired estimate (2.4) is recovered. □

Remark 2.2. To get a better understanding of the convergence of the algorithm,
especially to understand the condition (2.3a), it is helpful to look at a simpler
example:

(2.8a) ∂tU(x, t) = G(x, t) + sU(x, t),

and the corresponding nudged system becomes:

(2.8b)

 ∂tV = G̃+ sV + µ(Ih(U)− Ih(V )),

G̃(t) = Ih(∂tU)− sIh(Ũ), Ũ = Ih(U) + (I − Ih)(V ),

where s ∈ R is a constant. We consider the setting where Ih is a compact symmetric
operator on L2(Rd). Then there is an orthornormal basis of L2(Rd) consisting of
eigenfunctions, p1, p2, · · · , of Ih, with corresponding eigenvalues λ1, λ2, · · · . Let us
assume c0 = 1 in (1.5a) and Ih is semi-definite, so that 0 ≤ λi ≤ 1.

Now, we can write all quantities using an eigenfunction basis as

U(x, t) =
∑
i

ui(t)pi(x), G(t) =
∑
i

gi(t)pi(x), V (t) =
∑
i

vi(t)pi(x), G̃(t) =
∑
i

g̃i(t)pi(x).

Projection of equations (2.8) onto the eigenfunction modes yields

u′
i(t) = gi(t) + sui(t),

v′i(t) = g̃i(t) + svi(t) + µλi(ui(t)− vi(t)),

ũi(t) = λiui(t) + (1− λi)vi(t),

g̃i(t) = λi(gi + sui(t))− sλ2
iui(t)− sλi(1− λi)vi(t).

Taking subtraction u′
i(t)−v′i(t) and using that λigi = gi (which follows from (2.3b))

yields
d

dt
(vi(t)− ui(t)) = (s− µλi − sλi(1− λi)) (vi(t)− ui(t)).

Therefore,

vi(t)− ui(t) = e(s−µλi−sλi(1−λi))t(vi(0)− ui(0)),

and so

(2.9) V (t) = U(t) +

∞∑
i=1

e(s−µλi−sλi(1−λi))t(vi(0)− ui(0))pi.

This implies an interplay between the structure of source terms and the conditions
for convergence.

If s > 0, to guarantee exponential convergence for any initial condition we cannot
have any λi = 0, or if we do, then we must ask that ui(0) = vi(0). This is reasonable
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to expect – we cannot damp any of the error modes that belong to the kernel of Ih.
The lower bound of µ becomes

(2.10) µ ≥ s+ ε

λi
, ε > 0,

for all i such that ui(0) ̸= vi(0), from which we obtain e−εt convergence. This is
connected to condition (2.3a), since we can compute

||W (t)− Ih
(
W (t)

)
||22 =

∞∑
i=1

(λi − 1)2(vi(0)− ui(0))
2e2(s−µλi−sλi(1−λi))t.

Suppose that (2.10) holds whenever 0 < λi < 1 and ui(0) ̸= vi(0), and ui(0) = vi(0)
whenever λi = 0. Then we recover

||W (t)− Ih
(
W (t)

)
||2 ≤ ||W (0)||2 e−εt.

In other words, condition (2.3a) may be regarded as an implication from an
appropriate initial state and a sufficiently large µ.

The situation becomes quite different when s < 0. In this scenario, the source
term has stabilizing effect on the dynamics and helps dissipate the error. Note that
in (2.9) the exponents are bounded by

s− µλi − sλi(1− λi) ≤ s− λi(1− λi)s ≤
3

4
s < 0.

This implies unconditional convergence regardless of µ, and (2.3a) is automatically

recovered with ε = −3

4
s > 0. However, if the spatial transport is also considered,

the dissipation of the source term is not necessarily sufficient to absorb the error
from the convection term. Observational feedback control is still needed to enhance
the convergence in general.

The convergence of state further implies the convergence of force, as stated in
the following proposition.

Proposition 2.2. (Convergence of the force) Let (U,G) and (V, G̃) be the strong
solutions of the hydrodynamics (1.3) and the nudged system (1.4) associated with
Ih satisfying conditions (1.5). Assume that the convection flux F (·) and the source
term S(·,x, t) are Lipschitz continuous with Lipschitz constants Lf , Ls > 0. If
the nudged solution V (x, t) recovers the true data U(x, t) asymptotically in time,
||U(t)− V (t)||2 → 0 as t → ∞, then

||Ih(G(t))− G̃(t)||2 → 0, t → ∞.

In particular, if the force function is completely observable, Ih(G) = G, then

||G(t)− G̃(t)||2 → 0, t → ∞.

Proof. We have

G̃ = ∂tIh(U) + Ih(∇ · F (Ũ)− S(Ũ)), Ũ = Ih(U) + (I − Ih)(V ),

and

Ih(G) = ∂tIh(U) + Ih(∇ · F (U)− S(U)).

The difference between the above equations yields

Ih(G)− G̃ = Ih(∇ · (F (U)− F (Ũ)))− Ih(S(U)− S(Ũ)).
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Using the estimates (1.5a), (1.5b), it follows that

||Ih(G)− G̃||2 ≤ ||Ih(∇ · (F (U)− F (Ũ)))||2 + ||Ih(S(U)− S(Ũ))||2
≤ c1h

−1||F (U)− F (Ũ)||2 + C1h||S(U)− S(Ũ)||2
≤ (c1h

−1Lf + C1hLs)||U − Ũ ||2
= (c1h

−1Lf + C1hLs)||(U − V )− Ih(U − V )||2
≤ (c1h

−1Lf + C1hLs)C0||U − V ||2.

(2.11)

Hence, the convergence of the state, ||U(t) − V (t)||2 → 0, implies the convergence

of the reconstructed force, ||Ih(G(t))− G̃(t)||2 → 0. □

In contrast to the earlier discussions on the incompressible Navier-Stokes
equations [3, 19], our analysis in Proposition 2.1 employs the extra condition
(2.3a). Essentially, the purpose is to ensure that the relaxation term

µ(Ih(U) − Ih(V ))
t→∞−→ µ(U − V ). The difficulty in weakening this condition

arises from the lack of viscosity, which, if exists, would help dissipate the
interpolation error. For instance, by adding viscous terms ν∂2

xU and ν∂2
xV , with

ν > 0, to equations (2.1) and (2.2), we can derive the following inequality along
the lines of (2.5) and (2.6),

1

2

d

dt
||W ||22 + (µ− Ls)||W ||22 ≲ µ||W − Ih(W )||2||W ||2 − ν||∂xW ||22

≲ c1µh||w||H1 ||w||2 − ν||∂xw||22

≲
µ

2
||w||22 +

µc21h
2

2
||∂xw||22 − ν||∂xw||22.

The interpolation error is absorbed by the viscosity for Ls ≲ µ ≲ ν/h2, thereby
ensuring the exponential convergence. This is similar to the results in [3, 19].

Back to the setting of inviscid hydrodynamics, (1.5b) implies ||w − Ih(w)||2 ∼
h||∂xw||2, hence the condition (2.3a) amounts to ||∂xw(t)||2 ≲

1

h
e−εt. This

indicates that when the data has strong oscillations (large Ḣ1−norm), the
analytical convergence may not be guaranteed under insufficient observations.
Here we prove the worst-case scenario with respect to generic bounded data.

Proposition 2.3. (Error estimate under insufficient observations) Let (U,G)
be a strong solution of the hydrodynamics (1.3) driven by the Lipschitz continuous

convection flux and source term. Let (V, G̃) be a strong solution of the nudged
system (1.4), where the associated Ih satisfies conditions (1.5). Assume that the
data are uniformly bounded in H1(Rd), i.e.,

||G(t)||H1 , ||G̃(t)||H1 ≤ Mg, ||U(t)||H1 , ||V (t)||H1 ≤ Mu,

for all t > 0, with Mu, Mg > 0. Then the nudged solutions approach the true
solution time-asymptotically:

(2.12a) lim
t→∞

||U(t)− V (t)||2 ≤ κ1

µ− Ls
,

(2.12b) lim
t→∞

||G(t)− G̃(t)||2 ≤ κ2

µ− Ls
+ C1Mgh,
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where κ1 = 2(LfMu +Mg + C1Muh), κ2 = (c1h
−1Lf + C1hLs)C0κ1.

Proof. Denote W = U − V , the difference of (1.3) and (1.4a) yields

∂W

∂t
+∇ · (F (U)− F (V )) = G− G̃+ S(U)− S(V ) + µ(W − Ih(W ))− µW.

Taking L2−inner product with W leads to

1

2

d

dt
||W ||22 = −⟨W,∇ ·

(
F (U)− F (V )

)
⟩+ ⟨W,G− G̃⟩+ ⟨W,S(U)− S(V )⟩+ ⟨W,W − Ih(W )⟩ − µ||W ||22

≤
∫
Rd

(F (U)− F (V )) : ∇Wdx+ ||G− G̃||2||W ||2 + Ls||W ||22 + ||W ||2||W − Ih(W )||2 − µ||W ||22

≤ Lf ||W ||2||W ||H1 + 2Mg||W ||2 + Ls||W ||22 + C1h||W ||2||W ||H1 − µ||W ||22

≤ 2(LfMu +Mg + C1Muh)||W ||2 − (µ− Ls)||W ||22.
Rearrange the above inequality, we obtain

d

dt
||W ||2 + (µ− Ls)||W ||2 ≤ 2(LfMu +Mg + C1Muh).

Integration yields

||W (t)||2 ≤ ||W (0)||2e−(µ−Ls)t +
2(LfMu +Mg + C1Muh)

µ− Ls
(1− e−(µ−Ls)t),

the bound (2.12a) is recovered by passing the limit t → ∞. Furthermore,

||G(t)− G̃(t)||2 ≤ ||Ih(G(t))− G̃(t)||2 + ||G(t)− Ih(G(t))||2

≤ (c1h
−1Lf + C1hLs)C0||U(t)− V (t)||2 + C1h||G(t)||H1

≤ (c1h
−1Lf + C1hLs)C0||W (t)||2 + C1Mgh.

The second line is obtained using the inequality (2.11). The error bound of force
recovery (2.12b) is a direct consequence of the large-time limit. □

Remark 2.3. It is noticed that the error bounds in Propositions 2.1, 2.2, and 2.3
involve h−1 dependence. Indeed, along the lines of (2.11), the h−1 term occurs

when estimating the error of force recovery, ||G̃ − Ih(G)||2, where the usage of
interpolation bound (1.5a) yields

||Ih
(
∇ · (F (U)− F (Ũ))

)
||2 ≤ c1h

−1||F (U)− F (Ũ)||2.
Nevertheless, assuming the data admits sufficiently weak oscillations such that

sup
t≥0

||∇ · (F (U)− F (Ũ))||2
||F (U)− F (Ũ)||2

≤ C < ∞,

and the above estimate can be modified to

||Ih
(
∇ · (F (U)− F (Ũ))

)
||2 ≤ c0C||F (U)− F (Ũ)||2,

following the lines of (1.6). Subsequently, the h−1 dependence in the error bounds
will be removed.

Despite the difficulty in deriving an optimal error bound under less ideal
assumptions, in actual computations, we should still expect a more accurate
solution under a finer observation. Meanwhile, though the error bound in
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Proposition 2.3 does not offer an explicit criterion for determining the minimum
observation density required to meet a specific error threshold, we will demonstrate
that our proposed algorithm maintains reasonable accuracy even with relatively
sparse data through numerical experiments in Section 3.4.

2.2. Discretization of nudged system. To solve the nudged system (1.4), since

both the state V and the force G̃ are evolving in time, we introduce the following

discretization. Given the solutions V n = {V n
j }Nj=1 and G̃n = {G̃n

j }Nj=1 at time level

t = tn, the solution at x = xj and t = tn+1 are computed through:

V n+1
j − V n

j

∆t
+ δ∆x

x F (V n)j = G̃n
j + S(V n, xj , t

n) ,

G̃n+1
j = ∂tIh(U(tn+1))j + Ih(δ

∆x
x F (Ũn+1)− S(Ũn+1))j ,

Ũn+1 = Ih(U(tn+1)) + (I − Ih)(V
n+1) .

Here ∆t is the time step, and δ∆x
x F is the approximate flux derivative obtained with

non-oscillatory discretization such as ENO/WENO schemes with spatial mesh size
∆x. We assume that the observation Ih(U(t)) is recorded continuously in time,
whereas ∂tIh(U(tn+1)) can be computed with high order finite difference methods.
As such, the above forward Euler discretization can be directly replaced by higher
order strong stability preserving (SSP) Runge-Kutta methods [20].

It is worth noting that the numerical scheme described above yields nodal
values, {Vj}, over the computational grids, {xj}. The interpolation Ih(·), however,
is constructed based on the data over the observation grids, {xob

j }, which may
not coincide with xj in general. Therefore, appropriate interpolation techniques
(such as linear interpolation or cubic spline) may be necessary to approximate
nodal values (xob

j , V ob
j ). These approximations are then used to compute the

interpolations (xj , Ih(V )j).
We also emphasize the simplicity of our discretization. In the previous

works [34, 16], it was proposed to generate a sequence of approximations,
(Vk(x, t), Gk(x, t))|t≥tk , tk ≫ tk−1, k = 0, 1, 2, · · · . The solution Vk(x, t)
was obtained by solving the nudged equations with the re-initialization,
Vk(x, tk) = Vk−1(x, tk), coupled with the frozen force, Gk−1(x, t)|t≥tk , over
the time interval t ∈ [tk,∞). Although this algorithm guarantees exponential
convergence when applied to the incompressible Navier-Stokes equations, the need
to repeatedly solve the equation can be infeasible in industrial applications. In
contrast, our discretization method updates the states and the force simultaneously
on the fly, hence significantly reducing the computational cost.

2.3. Smooth fitting with kernel regression. In practical computations, the
accuracy of approximate solutions can depend on the selection of Ih, particularly
in scenarios with restricted observational data. Common methods for achieving a
smooth interpolation of observed data involve using Lagrangian interpolation with
nodal values distributed uniformly at a mesh size h, or projecting onto truncated
Fourier series with a cut-off frequency of 1/h. However, these approaches using
high-order polynomials or trigonometric polynomials may encounter significant
challenges such as numerical oscillations at boundaries (known as Runge’s
phenomenon) or sharp extrema (referred to as Gibbs’ phenomenon).
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To reduce the undesired numerical artifacts, we propose to fit the observed data
with kernel regression,

(2.13) Ih(U)(x) =

∑Nob

j=1 Kσ(|x− xob
j |)Uob

j∑Nob

j=1 Kσ(|x− xob
j |)

,

where Uob
j is the observation at xob

j ∈ Rd, Kσ(·) is the Gaussian kernel with
bandwidth σ,

(2.14) Kσ(|x|) =
1

σd
exp{−|x|2

2σ2
}.

A larger σ leads to stronger kernel smoothing, whereas a smaller σ generates
a theoretically more accurate fitting. However, taking σ too small in actual
computations can result in severe arithmetic errors. Hence, to achieve a balance
between solution sharpness and computational stability, we suggest taking√
d

2
h < σ ≤ h. It’s important to note that the approximate data Ih(U) is derived

from weighted averages of nearby observations, which generally do not preserve
nodal values at interpolation points. In practical applications where observations
may be noisy due to measurement errors, using kernel regression instead of classical
interpolation methods can better mitigate over-fitting issues by appropriately
adjusting the kernel bandwidth.

A common challenge when using kernel regression (2.13) is the larger error
observed at the boundary of the compact support. This is due to the boundary
conditions of the data U(x) not being incorporated, leading to higher accuracy in
the interior of the domain compared to near the boundary. To address this, we
impose a simple boundary correction via ghost cell extensions. For the convenience
of demonstration, we consider uniformly distributed observation grids {xob

j }Nob
j=1 over

the computational interval [a, b] with xob
1 = a and xob

Nob
= b. We modify the kernel

regression with

(2.15) Ih(U)(x) =

∑Nob+m
j=−(m−1) Kσ(|x− xob

j |)Uob
j∑Nob+m

j=−(m−1) Kσ(|x− xob
j |)

.

The ghost nodes are given by

xob
1−j = a− jh, xob

Nob+j = b+ jh, j = 1, 2, · · · ,m.

This way, boundary conditions are encoded implicitly in the extrapolation of
{Uob

j }j≤0 and {Uob
j }j≥Nob+1. For instance, the extended data at the left boundary

are set to be

Uob
1−j =


Uob
Nob−j , periodic boundary

2Ua − Uob
1+j , Dirichlet boundary U(a) = ua

Uob
1+j , Neumann boundary U ′(a) = 0

, j = 1, 2, · · · ,m.

The data can be extrapolated at the right boundary in a similar manner. Although
the kernel regression does not meet the conditions specified in (1.5), it does satisfy
estimates similar to those in (1.5b), as is verified in the following result.

Theorem 2.4. Let Uob
j = U(xob

j ), where U : Ω → R, and assume that Kσ(x) = 0
for |x| ≥ Cσ. Then the following hold.
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(i) If U is Lipschitz continuous with Lipshcitz constant L, then

∥Ih(U)− U∥∞ ≤ CLσ.

(ii) If ∇U is Lipschitz continuous with Lipschitz constant L, then

∥Ih(U)− U∥2 ≤ Cσ∥U∥H1 + LC2σ2|Ω|1/2.

Proof. For simplicity, let us write

dσ(x) =

Nob∑
j=1

Kσ(|x− xob
j |).

Then we have

|Ih(U)(x)− U(x)| =

∣∣∣∣∣∣ 1

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |)U(xob

j )− U(x)

∣∣∣∣∣∣
≤ 1

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |)

∣∣U(xob
j )− U(x)

∣∣
≤ L

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |)

∣∣xob
j − x

∣∣
≤ CLσ

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |) = CLσ,

which establishes (i).
For (ii), we continue the computation above to obtain

|Ih(U)(x)− U(x)| ≤ 1

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |)

∣∣U(xob
j )− U(x)

∣∣
≤ 1

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |)

(∣∣∇U(x) · (xob
j − x)

∣∣+ L|xob
j − x|2

)
≤ 1

dσ(x)

Nob∑
j=1

Kσ(|x− xob
j |)

(
|∇U(x)|Cσ + LC2σ2

)
≤ |∇U(x)|Cσ + LC2σ2.

The proof is completed by taking the L2 norm on both sides. □

Remark 2.5. The estimates in Theorem 2.4 are similar to (1.5b) with m = 1,
provided we use that σ ∼ h, though they are not exactly the same. Unfortunately,
it is not possible to prove estimates similar to (1.5a); instead, we can prove estimates
on the derivatives of the interpolated function, that is the quantity ∥∂αIh(U)∥ is
straightforward to estimate, since in the case that Kσ(x) =

1
σdK1(x/σ) we have

(2.16) ∂αIh(U)(x) =

∑Nob

j=1 σ
−|α|∂αKσ(|x− xob

j |)Uob
j∑Nob

j=1 Kσ(|x− xob
j |)

.

However, such estimates are not helpful in our analysis, so we do not pursue them
further. Even though kernel regression does not fully satisfy (1.5), the method still



14 JINGCHENG LU, KUNLUN QI, LI WANG, AND JEFF CALDER

produces satisfactory numerical solutions, as demonstrated by the examples in the
next section.

In summary, our construction of interpolant operator via kernel regression
provides significant practical benefits in the following aspects:
(i) Convenient implementation of flexible boundary conditions: kernel regression
allows for straightforward handling of complex and non-standard boundary
conditions, which is often a crucial challenge suffered by other interpolants, e.g.
spectral projections or piecewise linear interpolation;
(ii) Robust processing of noisy observations: our approach demonstrates inherent
resilience to noisy observational data, facilitating more reliable interpolation in
real-world scenarios where measurements are often imperfect. This is explicitly
shown in the tests with noisy data presented in the following section 3.4.

These advantages are critical for potential extensions to industrial applications,
such as reactor simulations with complex geometry and possibly inaccurate
measured data. In simpler computational settings, alternative choices of the
interpolant operator may also provide satisfactory results. As the main focus of
our paper is to validate the nudging-based feedback control framework as applied
to generic inviscid hydrodynamics, particularly when recovering moments from
incomplete observations (see Section 4), further investigations of other interpolants
will be left for future study.

3. Numerical experiments I – states and force recovery

We verify the effectiveness of the algorithm (1.4) in both scalar and system test
cases. In all experiments, unless stated otherwise, the operator Ih is derived using
the kernel regression (2.15) with m = 3 ghost nodes applied at each boundary.
The kernel bandwidth in equation (2.14) is set to σ = h. The observation grids
{xob

j } are uniformly placed over the computational domain. The nudged equations
are discretized with the 5th-order WENO finite difference scheme in space, and
time integration is performed with an explicit SSPRK3 method with CFL = 0.7.
Reference solutions are obtained by discretizing the exact dynamics with WENO5-
SSPRK3 on fine meshes.

3.1. Scalar test case. Consider the following exact dynamics:

(3.1) ∂tu+ ∂xu = −∂xp+ S(u), x ∈ [0, 2π],

with

p =
u2

6
, S(u) = 0.2

√
1 + u2.

The initial data consists of sine and cosine waves with different frequencies,

u0(x) = −0.8 sin(x) + 0.4 sin(2x) + 0.02 cos(10x).

Periodic boundary conditions are applied at both endpoints. In this test case, the
pressure gradient g = −∂xp generates high-frequencies and sharp extrema over time
due to the non-linearity.
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Assume that the source function S(·) is known, our goal is to recover the force

term, g = −∂x(
u2

6
), by evolving the nudged system

(3.2)

 ∂tv + ∂xv = g̃ + 0.2
√
1 + v2 + µ(Ih(u)− Ih(v)) ,

g̃ = ∂tIh(u) + Ih(∂xũ− 0.2
√
1 + ũ2), ũ = Ih(u) + (I − Ih)(v)

,

with zero initial data,

v0(x) = 0, g̃0(x) = 0.

The nudging coefficient µ is set to be 3. We intend to recover the solution state u
and the force function g from Nob = 150 spatial observation points. The nudged
system is discretized with N = 800 equidistant grid points.

Figures 3.1, 3.2 display the evolution of approximate solutions up to T = 1.5.
The computed solutions v and g̃ converge rapidly to the reference solutions u and g
over time. Although the smoothing effect of kernel regression causes some clipping
at local extrema in the reconstructed force g̃, the overall trend of the exact data is

captured effectively. The L1−relative error at terminal time is
||g(T )− g̃(T )||1

||g(T )||1
=

3.37× 10−2. The history of state error, ||u(t)− v(t)||1, is shown in Figure 3.3. The
result confirms the exponential convergence rate, as expected from convergence
analysis.

(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

Figure 3.1. Scalar dynamics. State recovery. Nudged solution
(blue lines) vs. reference solution (black dash lines).
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

Figure 3.2. Scalar dynamics. Force recovery. Nudged solution
(blue lines) vs. reference data (black dash lines).

Figure 3.3. Scalar dynamics. History of L1 state error.

3.2. Nonlinear system. We now examine the performance of the algorithm when
applied to the one-dimensional isentropic Euler system for gas dynamics:

∂U

∂t
+

∂

∂x
F (U) = G,

with

U =

[
ρ
ρu

]
, F (U) =

[
ρu
ρu2

]
, G = − ∂

∂x

[
0
p

]
.
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Here ρ is the density, m = ρu is the momentum, and p is the pressure given by the
power law

p = κργ , κ = 1, γ = 1.4.

The exact data is generated with the initial condition

ρ0(x) = 1 + 0.2 sin(πx), u0(x) = 1,

over the computational domain [0, 4]. Periodic boundary conditions are applied at
both endpoints. Assuming sparse observations are available for the density and the
momentum, we expect to recover the true data with the nudged equations,

∂V

∂t
+

∂

∂x
F (V ) = G̃+ µ(Ih(U)− Ih(V )) ,

G̃ =
∂

∂t
Ih(U) + Ih(

∂

∂x
F (Ũ)), Ũ = Ih(U) + (I − Ih)(V ) .

The two components of V are the approximate density ρ̂ and momentum m̂ = ρ̂u.

The reconstructed pressure gradient, ∂̃xp, is given by the second component of −G̃.
The nudged system is initialized with

ρ̂0(x) = 1, û0(x) = 0.5, G̃0(x) =

[
0
0

]
.

The nudging coefficient is set to µ = 5. Numerical discretization is implemented
over N = 600 mesh points.

Figures 3.4 – 3.6 present the approximations to each state component and the
pressure gradient based on Nob = 150 equidistant observation grids up to T = 1.5.
The results have shown a stable convergence of computed solutions towards the
exact data. The recovered pressure gradient, although slightly clipped at sharp

extrema, shows a small terminal relative error of
||∂xp(T )− ∂̃xp(T )||1

||∂xp(T )||1
= 3.56 ×

10−2. The state errors of density and momentum are shown in Figure 3.7, which
again verify the exponential convergence rates.

3.3. Multi-dimensional system. To validate our algorithm in multi-dimensional
problems, we consider the two-dimensional isentropic Euler equations

∂U

∂t
+

∂

∂x
Fx(U) +

∂

∂y
Fy(U) = G

with

U =

 ρ
ρu
ρv

 , Fx(U) =

 ρu
ρu2

ρuv

 , Fx(U) =

 ρv
ρuv
ρv2

 , G = −

 0
∂xp
∂yp

 .

The system is closed by the following constitutive relation:

p = κργ , κ = 0.5, γ = 1.2.

The exact data is generated with the initial conditions

ρ0(x, y) = 1 + 0.4 sin(πx) cos(πy), u0(x, y) = 1, v0(x, y) = 0.5, x, y ∈ [−1, 1]2.
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

Figure 3.4. 1D isentropic Euler. Density recovery. Nudged
solution (blue lines) vs. reference data (black dash lines).

Periodic boundary conditions are applied at the four boundaries. The nudged
solutions are generated with the dynamics

∂V

∂t
+

∂

∂x
Fx(V ) +

∂

∂y
Fy(V ) = G̃+ µ(Ih(U)− Ih(V )) ,

G̃ =
∂

∂t
Ih(U) + Ih(

∂

∂x
Fx(Ũ) +

∂

∂y
Fy(Ũ)), Ũ = Ih(U) + (I − Ih)(V ) .

The three components of V are the approximate density ρ̂, x−momentum m̂x = ρ̂u,

and y−momentum m̂y = ρ̂v. The reconstructed pressure derivatives, ∂̃xp and ∂̃yp,

are given by the second and the third components of −G̃. We initialize the nudged
system with

ρ̂0(x, y) = 1, û0(x, y) = 1, v̂0(x, y) = 0.5, G̃ =

 0
0
0

 .

The nudging coefficient is set to µ = 8. The kernel regression operator Ih is
obtained with bandwidth σ = max{hob

x , hob
y }, where hx and hy are the mesh sizes

of observation grids along x− and y−directions. The exact data are observed over
the 60×60 observation mesh. The nudged equations are discretized with WENO5-
SSPRK3 under 180× 180 computational mesh.

Figure 3.8 presents the computed solutions along y = 0 up to T = 1. The results
verify the quick convergence of the approximate density and momentum towards
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

Figure 3.5. 1D isentropic Euler. Momentum recovery. Nudged
solution (blue lines) vs. reference data (black dash lines).

the reference solutions. The computed pressure gradients closely characterize the

variation in the exact data. The terminal relative errors are
||∂̃xp(T )− ∂xp(T )||1

||∂xp(T )||1
=

1.80 × 10−2 and
||∂̃yp(T )− ∂yp(T )||1

||∂yp(T )||1
= 1.79 × 10−2. The history of state errors,

as shown in Figure 3.9, verifies the exponential convergence in multi-dimensions.

3.4. Noisy measurement and sparse observation. In practical implementations
of data assimilation algorithms, challenges often arise due to noisy and/or sparse
observations, which can degrade the accuracy of data recovery. In this section, we
primarily investigate the performance of our algorithm under noisy observational
data and varying observation density.

For convenience of demonstration, we consider the scalar dynamics (3.1) and the
corresponding nudging system (3.2). At first, we examine the performance of our
data assimilation algorithm under noisy observations, namely, the feedback control
term is constructed with Ih(u

ε(t)) where

uε(xob
j , t) = u(xob

j , t) + εNj,t,
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

Figure 3.6. 1D isentropic Euler. Pressure gradient recovery.
Nudged solution (blue lines) vs. reference data (black dash lines).

(a) Density error (b) Momentum error

Figure 3.7. 1D isentropic Euler. History of state errors.

with {Nj,t} independently and identically distributed with respect to the standard
normal distribution. Following the computational settings in Section 3.1, we still
take the nudging coefficient µ = 3 and assume that the measurement of u is
conducted over Nob = 150 grids, i.e., the mesh size of observation grids is h =
2π/150. We take the magnitude of noise to ε = 10−4. As demonstrated in Section
2.3, a key advantage of using kernel regression as an observable interpolant lies
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(a) t = 0 (b) t = 1 (c) t = 1.5

Figure 3.8. 2D Euler. Nudged solutions (blue lines) vs. exact
data (black dash lines).

(a) Density error (b) x−momentum error (c) y−momentum error

Figure 3.9. 2D Euler. History of state errors.

in its convenience and robustness in processing noisy data. To illustrate this, we
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display the computational results in Figure 3.10. It is observed that, while the
recovery of the solution state u remains relatively unaffected by small levels of
noise, the recovery of the unknown forcing term g = −∂xp is significantly more
sensitive to inaccuracies in the observations. By increasing the bandwidth of the
regression kernel, the recovered data can be effectively smoothed, although at the
cost of more dissipative local extrema. In practical applications, the value of σ
can be tuned to strike a balance between preserving sharp features and achieving
desired smoothness in the reconstructed solutions.

(a) σ = h (b) σ = 2h (c) σ = 3h

(d) σ = h (e) σ = 2h (f) σ = 3h

Figure 3.10. Scalar dynamics with noisy observation. Nudged
solutions (blue lines) vs. reference solutions (black dash lines) at
t = 1.5 under varying regression bandwidth. The first row presents
the results for state recovery, and the second row presents the
results for force recovery.

We also evaluate the performance of our algorithm under sparse observational
data. In each test case, the bandwidth of the regression kernel is set to σ = h =
2π/Nob, with Nob being the number of observation grids. As shown in Figure 3.11,
it can be found that reducing the number of observation grids leads to less clear
details in the recovered solution. Nevertheless, the overall variation of the solutions
can still be reasonably captured, even when the observations are very sparse. In
practical scenarios where the number of observation points (sensors) is limited,
local refinement of the observation grids in the regions with complex interactions
may further improve the reconstruction accuracy. A detailed investigation of such
adaptive strategies is left for our future work.

4. Moment recovery with incomplete observations

The previous discussion has established the validity of algorithm (1.4) when
observational data for all state components are available, a situation we referred
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(a) Nob = 30 (b) Nob = 90 (c) Nob = 150

(d) Nob = 30 (e) Nob = 90 (f) Nob = 150

Figure 3.11. Scalar dynamics with varying observation density.
Nudged solutions (blue lines) vs. reference solutions (black dash
lines) at t = 1.5 under varying observation density. The first row
presents the results for state recovery, and the second row presents
the results for force recovery.

to as complete observation. However, in some applications, only some of the
state components may be observable. In such cases, where data for some state
components are missing, we refer to the observation as incomplete. This scenario is
particularly relevant in kinetic theory, where one aims to derive a moment system as
a reduced-order model. In this section, we demonstrate that the method proposed in
Section 2 can be extended to handle incomplete observations, providing an efficient
mechanism for moment recovery.

4.1. Problem set up. As a concrete example, we consider the one-dimensional
radiative transfer equation (RTE):

(4.1) ∂tf + v∂xf = σs(
1

2

∫ 1

−1

fdv − f)− σaf, x ∈ [0, 1], v ∈ [−1, 1].

Here f(x, v, t) is the specific intensity of radiation, v ∈ [−1, 1] is the cosine of the
angle between the photon velocity and the x-axis. σs(x) ≥ 0 and σa(x) ≥ 0 are the
scattering and absorption coefficients, respectively.

Let Pk(v) be the Legendre polynomial of k degrees. Integrating the equation
(4.1) against Pk(v) over v ∈ [−1, 1] and using Bonnet’s recursion formula, one
obtains the moment equations up to the N−th order:
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∂tm0 + ∂xm1 = −σam0,

∂tm1 +
1

3
∂xm0 +

2

3
∂xm2 = −(σs + σa)m1,

· · ·

∂tmN +
N

2N + 1
∂xmN−1 +

N + 1

2N + 1
∂xmN+1 = −(σa + σs)mN ,

(4.2)

where the k−th moment is defined as

mk(x, t) =
1

2

∫ 1

−1

f(x, v, t)Pk(v)dv.

The system (4.2) is deemed a model reduction for (4.1), but it is not closed as
the evolution of mN depends on the unknown moment mN+1. One approach to
closure involves using a machine learning-based moment closure [23, 25, 24]. Given
sufficient data of moments m1 to mN , which can be obtained by solving (4.1), one
attempts to learn a relationship such as:

(4.3) ∂xmN+1 =

N∑
k=0

Nk(m0,m1, · · · ,mN )∂xmk.

However, direct simulation of the kinetic equation (4.1) can be expensive, and
instead we aim to reconstruct ∂xmN+1 from the observed data of lower-order
moments. To this end, we write the moment equations in the condensed form:

∂mN

∂t
+AN

∂mN

∂x
= gN+1 + SNmN ,

gN+1 = − N + 1

2N + 1
∂xmN+1eN+1,

(4.4)

with mN = (m0,m1, · · · ,mN )⊤, eN+1 = (0, · · · , 0, 1)⊤, and the coefficient
matrices:

AN =



0 1 0 0 · · · 0
1
3 0 2

3 0 · · · 0
0 2

5 0 3
5 · · · 0

...
...

...
. . .

...
...

0 0 · · · N−1
2N−1 0 N

2N−1

0 0 · · · 0 N
2N+1 0


∈ R(N+1)×(N+1),(4.5)

SN = diag(−σa,−(σs + σa), · · · ,−(σs + σa)) ∈ R(N+1)×(N+1).(4.6)

Ideally, if all components of mN are measurable at sparse observation points,
one could asymptotically reconstruct the continuous solution fields mN (x, t)
and ∂xmN+1(x, t) over time, following the methodology described in (1.4).
These reconstructed data could then be utilized to train neural networks to
model the relationship in (4.3). However, obtaining data for all moments is
impractical in real-world applications. Indeed, higher-order moments beyond
the first two—angle-averaged intensity m0 and Eddington flux m1—often lack
direct physical interpretation and are not readily available for measurement.
Nonetheless, [23] highlights the necessity of using a sufficient number of moments
(N ≥ 5) to ensure accurate results in both optically-thin and optically-thick
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regimes. Therefore, it is crucial to obtain data for m2, m3, . . ., mN+1. To avoid
the challenges associated with microscopic or full measurements of the particle
distribution f in complex applications, we propose using the continuous data
assimilation mechanism described earlier.

4.2. Moment recovery via continuous data assimilation. Back to the
moment system (4.2) (or (4.4)), we distinguish the notations of the ground truth
data, mk(x, t), and the numerical solutions, m̂k(x, t). Our purpose is to recover the
continuous data fields of all moments, mN+1 = (m0,m1, · · · ,mN+1)

⊤, while using
the expensive observations of higher-order moments to a minimal extent. To this
end, we assume that the full measurements of f , and thereby complete observations
of all moments of interest, are only conducted at the boundaries. At the interior of
the solution domain, we employ incomplete observations with the macroscopically
observable moments up to the n−th order, mn = (m0,m1, · · · ,mn)

⊤, n < N .
Moreover, the gradients ∂xmn+1, ∂xmn+2, · · · , ∂xmN+1 are assumed to be
completely observable with respect to the interpolant operator Ih, i.e.,

Ih(∂xmk) = ∂xmk, k = n+ 1, n+ 2, · · ·N.

We propose the following moment recovery algorithm for the one-dimensional RTE.

Step 1. Reconstruct the moments m̂n(x, t) = (m̂0(x, t), m̂1(x, t), · · · , m̂n(x, t))
⊤ by

solving the nudged system with observations mn:
∂m̂n

∂t
+An

∂m̂n

∂x
= g̃n+1 + Snm̂n + µ(Ih(mn)− Ih(m̂n)),

g̃n+1 =
∂

∂t
Ih(mn) + Ih(An

∂m̃n

∂x
− Snm̃n), m̃n = Ih(mn) + (I − Ih)(m̂n) .

Step 2. Obtain the reconstructed gradient, ∂̃xmn+1, from the last component of

−2n+ 1

n+ 1
g̃n+1. Then given the boundary measurement mn+1(0, t) and mn+1(1, t),

the approximation to mn+1 is then obtained with integration:

m̂n+1(x, t) = mn+1(0, t) +

∫ x

0

(∂̃xmn+1 + cn+1)dx .

Here cn+1 is the gradient correction

cn+1 = −
∫ 1

0

∂̃xmn+1dx+mn+1(1, t)−mn+1(0, t),

such that the boundary conditions, m̂n+1(0, t) = mn+1(0, t) and m̂n+1(1, t) =
mn+1(1, t), are ensured.
Step 3. For k = n+1, n+2, · · · , N , suppose the nudged solutions m̂0(x, t), · · · , m̂k(x, t)
have been obtained, to get m̂k+1(x, t), we first compute its approximate gradient
with

∂̃xmk+1 = −2k + 1

k + 1
Ih(∂tm̂k +

k

2k + 1
∂xm̂k−1 + (σa + σs)m̂k).

Then we recover m̂k+1 through integration

m̂k+1(x, t) = mk+1(0, t) +

∫ x

0

(∂̃xmk+1 + ck+1)dx
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with

ck+1 = −
∫ 1

0

∂̃xmk+1dx+mk+1(1, t)−mk+1(0, t).

The reconstructed moment satisfies the given boundary measurements:
m̂k+1(0, t) = mk+1(0, t) and m̂k+1(1, t) = mk+1(1, t).

We now comment on the availability of the boundary data mk(0, t) and mk(1, t).
While obtaining measurements of f throughout the entire interior domain can be
impractical, measurements at the boundaries are more feasible. Specifically, one can
impose a user-specified incoming boundary condition, i.e., f(0, v > 0) and f(1, v <
0), and then perform velocity-resolved boundary measurements, i.e., f(0, v < 0)
and f(1, v > 0). This provides complete information about f at the boundaries,
allowing for the calculation of moments:

mk(0) =
1

2

∫ 1

−1

f(x = 0, v)Pk(v)dv, mk(1) =
1

2

∫ 1

−1

f(x = 1, v)Pk(v)dv.

This input-output data pair is common in inverse problem setups, and their
relationship is often referred to as the Albedo operator. For more details, see [4].

It is worth mentioning that the above moment recovery procedure can be
naturally extended to general 1-D moment systems that admit the structure:

∂tmk+

k+1∑
i=0

aki(m0,m1, · · · ,mk)∂xmi = Sk(m0,m1, · · · ,mk), ak,k+1 ̸= 0, k = 0, 1, 2, · · · .

For instance, we briefly mention the one-dimensional Boltzmann equation with
BGK collision [6]:

∂f

∂t
+ v

∂f

∂x
=

1

τ
(fM − f), x ∈ [0, 1], v ∈ R .

Here τ > 0 is the relaxation time, and fM =
ρ√
2πθ

exp(−|v − u|2

2θ
) is the

Maxwellian. We define the moments as mN = (ρ, u, θ, f3, f4, · · · , fN )⊤ ∈ RN+1,
where

ρ(x, t) =

∫
R
f(x, v, t)dv, ρu(x, t) =

∫
R
vf(x, v, t)dv,

1

2
ρθ(x, t) =

∫
R

(v − u)2

2
f(x, v, t)dv ,

and fk is the coefficient in the Hermite expansion [8, 9]:

f(x, v, t) =

∞∑
k=0

fk(x, t)Hθ(x,t),k(
v − u(x, t)√

θ(x, t)
), Hθ,k(v) =

1√
2π

θ−
k+1
2 Hek(v) exp(−

v2

2
),

where Hek being the k−th Hermite polynomial. In particular, it can be shown that
f0 = ρ and f1 = f2 = 0. Inspired by [7], the corresponding moments system are
given by

∂mN

∂t
+AN

∂mN

∂x
= −(N + 1)

∂fN+1

∂x
eN+1 −

1

τ
PNmN ,
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where

AN =



u ρ 0 0 0 · · · · · · · · · · · · 0
θ
ρ

u 1 0 0 · · · · · · · · · · · · 0

0 2θ u 6
ρ

0 · · · · · · · · · · · · 0

0 4f3
ρθ
2

u 4 0 · · · · · · · · · 0

− θf3
ρ

5f4
3f3
2

θ u 5 0 · · · · · · 0

...
...

...
... · · · · · · · · · · · · · · · · · ·

− θfN−2

ρ
NfN−1

1
2
[(N − 2)fN−2 + θfN−4] − 3fN−3

ρ
0 · · · 0 θ u N

− θfN−1

ρ
(N + 1)fN

1
2
[(N − 1)fN−1 + θfN−3] − 3fN−2

ρ
0 · · · · · · 0 θ u



,

and

PN = diag(0, 0, 0, 1, · · · , 1).

Despite the non-constant coefficients, AN remains an unreduced lower Hessenberg
matrix for a physical density, ρ > 0, thereby allowing the recovery of higher
moments through integration.

4.3. Numerical experiments II – moment recovery.

4.3.1. One-dimensional RTE. We first apply our moment recovery algorithm to the
moment system (4.2) derived from the one-dimensional RTE. The reference solution
is generated by solving the equation (4.1) using the WENO5-SSPRK3 with initial
data

f0(x, v) = 0.5 +

5∑
k=1

1

k2
sin(2kπx), x ∈ [0, 1].

Periodic boundary conditions are applied at both endpoints. The number of grid
points in space is set to N = 600. The velocity space is discretized with 15 Gauss-
Legendre quadrature points. The time step is taken to ∆t = 0.5∆x and the terminal
time is t = 1.

We consider the data under different absorption coefficients σa and σs. In all test
cases, the nudged equations are discretized with WENO5-SSPRK3 under N = 300
mesh points. The nudging coefficient is set to µ = 6. Complete observations are
assumed to be available at both boundaries. We intend to recover the higher-
order moments based on the observed data of m0 and m1 over Nob = 60 uniform
observation grids at the interior. The approximate moments are initialized with
m̂0 = 0.5, m̂2 = 0, m̂3 = 0, m̂4 = 0, m̂5 = 0.
Test 1 (σa = σs = 1). We recover the moments up to the fifth order in the optically-
thin regime with small absorption coefficients σa = σs = 1. The nudged solutions
m̂k at terminal time are displayed in Figure 4.1. It is observed that all the recovered
moments match the exact data accurately. The history of moment errors, as shown
in Figure 4.2, verifies the convergence of the algorithm, where the relatively large
error at early times is primarily due to the intentionally inaccurate initialization
used in our test cases. This setup was chosen to demonstrate the robustness of the
nudging-based feedback control, particularly its ability to recover accurate solutions
even from poor initial guesses.
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Test 2 (σa = σs = 10). Now we consider the data under a larger optical depth. Due
to the stronger dissipation introduced by the source term, all the moments admit
overall smaller scales, which can be observed from Figure 4.3. It is noticed that the
algorithm generates accurate approximations to the first four moments, whereas the
deviations in m4 and m5 appear significantly larger. We argue that the seemingly
large errors are due to the excessively small moment magnitudes (10−8 ∼ 10−7),
in which case the accumulated discretization errors from lower moments recovery
might become dominating. In fact, the history of errors (Figure 4.4) indicates the
stable convergence of the approximate moments toward the exact solutions.

We also mention that as reported in [23], the closure relation is relatively easy
to capture in the intermediate and optically thick regimes, and the model (4.3)
can achieve a good accuracy by only using m0, m1, and m2, which are accurately
recovered in the computations. Hence, despite the difficulty in recovering high-
order moments with extremely small magnitudes, we can still expect our algorithm
to be effective when combined with actual machine-learning closure models.

Figure 4.1. Moment recovery for 1D RTE. Nudged solutions (red
lines) vs. reference data (black dash lines). σa = σs = 1. t = 1.

4.3.2. Boltzmann equation for channel flow. In addition to the one-dimensional
radiation transport, we also test our algorithm on particle flow through a closed
channel. The flow is governed by a reduced Boltzmann equation with one dimension
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Figure 4.2. 1D RTE. History of moment errors. σa = σs = 1.

in space and two dimensions in velocity:

∂f

∂t
+ v1∂xf =

∫∫
R2×S1

B(v − v∗, σ)(f
′f ′

∗ − ff∗) dv∗ dσ, x ∈ R, v = (v1, v2) ∈ R2,

(4.7)

where

f = f(x,v, t), f∗ = f(x,v∗, t), f ′ = f(x,v′, t), f ′
∗ = f(x,v′

∗, t),

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′
∗ =

v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B(v − v∗, σ) measures the intensity of particle collisions. In
the case of the inverse power law, B can be separated as the kinetic part Φ and
angular part b,

B(v − v∗, σ) = b(cos θ)Φ(|v − v∗|), with cos θ = σ · v − v∗

|v − v∗|
,

where kinetic collision part Φ(|v−v∗|) = |v−v∗|γ includes hard potential (γ > 0),
Maxwellian molecule (γ = 0) and soft potential (γ < 0), and angular part b(cos θ)
is often regarded to satisfy the Grad’s cutoff assumption, i.e.,

∫
S2 b(cos θ) dσ < ∞.

For more details on the collision kernel, see [39]. For convenience of discussion,
we consider the Maxwellian molecule with constant collision kernel B = 0.2. The
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Figure 4.3. Moment recovery for 1D RTE. Nudged solutions (red
lines) vs. reference data (black dash lines). σa = σs = 10. t = 1.

initial condition is set to:

f0(x, v1, v2) = ρ(x)f1(v1)f2(v2), x ∈ [0, 1], (v1, v2) ∈ R2,

with

ρ(x) = 1 + 0.2 sin(2πx),

f1(v1) =
1

σ1

√
2π

exp(− (v1 − 1)2

2σ2
1

), v1 ∈ R, σ1 = 0.5,

f2(v2) =
1

σ2

√
2π

exp(− (v2 − 0.1)2

2σ2
2

), v2 ∈ R, σ2 = 0.05.

Periodic boundary conditions are applied at both endpoints of the space interval.
To generate reference data, the transport part is solved with WENO5-SSPRK3,
while the collision part is calculated with the fast spectral method [35, 21, 22].
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Figure 4.4. 1D RTE. History of moment errors. σa = σs = 10.

We define the moments of particle distribution f up to the third order,

ρ(x, t) :=

∫
R2

f(x,v, t) dv,

ρu(x, t) :=

∫
R2

vf(x,v, t) dv, u = (u, v),

P(x, t) :=
∫
R2

(v − u)⊗ (v − u)f(x,v, t) dv =

[
p11 p12
p21 p22

]
, p12 = p21,

ρe(x, t) :=

∫
R2

|v − u|2

2
f(x,v, t) dv =

1

2
trace(P),

q(x, t) :=

∫
R2

|v − u|2

2
(v − u)f(x,v, t) dv = [q1, q2]

⊤.

Integrating the equation (4.7) against 1, v, and
|v|2

2
yields the moment equations

(4.8)



∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) + ∂xp11 = 0,

∂t(ρv) + ∂x(ρuv) + ∂xp12 = 0,

∂t(ρe) + ∂x(ρeu) + ∂xq1 + p11∂xu+ p12∂xv = 0.
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Note that the internal energy is given by ρe =
1

2
(p11 + p22), while the evolution of

p22 is not described by the moment equations (4.8). Nevertheless, due to the small
variance of f in y-velocity, the contribution of p22 can be neglected in our test case,

which yields ρe =
1

2
p11. Hence, the last equation in (4.8) reduces to

∂tp11 + ∂x(p11u) + 2∂xq1 + 2p11∂xu+ 2p12∂xv = 0.

Assume the complete observations of all moments are available at the boundaries.
At the interior of the solution domain, we employ the partial observations with ρ,
ρu, and ρv over Nob = 60 uniform observation grids. To recover the continuous
data fields asymptotically in time, the solution procedures are briefly described
as follows: at first, following the constructions of the nudged system (1.4), we
reconstruct the approximate moments ρ̂, ρ̂u, ρ̂v, p̂11, p̂12 under µ = 10. Then the
approximate gradient of q1 is obtained by

∂̃xq1 = −1

2
Ih(∂tp̂11 + ∂x(p̂11û) + 2p̂11∂xû+ 2p̂12∂xv̂), û =

ρ̂u

ρ̂
, v̂ =

ρ̂v

ρ̂
.

Subsequently, the reconstruction of the third-order moment, q̂1, is given by

q̂1 = q1(0) +

∫ x

0

(∂̃xq1 + cq) dx, cq = −
∫ 1

0

∂̃xq1 dx+ q1(1)− q1(0).

The nudged equations are initialized with

ρ̂0(x) = 1, û0(x) = 1, v̂0(x) = 0.1, P̂0(x) =

[
0 0
0 0

]
,

and discretized with WENO5-SSPRK3 under N = 300 space mesh points. Figure
4.5 displays the computational results at t = 0.7. The data of ρ, ρu, ρv, p11 and
q1, which have major contributions to the system, are recovered with satisfactory
accuracy. The seemingly large error of p̂12 is, again, due to the extremely small
magnitude of the exact p12 (≈ 10−9), hence the influence on the overall dynamics
is minimal.

5. Extension to higher dimension

In the preceding discussions, we have demonstrated the efficacy of our
moment recovery algorithm in one-dimensional space. Essentially, leveraging the
sparsely observed data of lower-order moments enables the retrieval of gradients
(variations) of higher-order moments at the interior of the domain. In addition,
when complemented with sufficient ground truth data at the boundaries, the
integration of the moment equations facilitates the recovery of all relevant
moments.

However, extending the aforementioned procedure to recover higher-order
moments in multiple dimensions is highly nontrivial. This complexity arises
because the divergence term now involves a mixture of directional derivatives,
which can lead to non-unique recovery of the quantity before differentiation. To
illustrate this challenge and suggest a possible approach for addressing it, we
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Figure 4.5. Moment recovery for Boltzmann. Nudged solutions
(red lines) vs. reference data (black dash lines). t = 0.7.

briefly discuss the two-dimensional Eulerian system:
∂tρ+∇ · (ρu) = 0 ,

∂tρu+∇ · (ρu⊗ u) +∇ · P = 0 ,

∂tρe+∇ · (ρeu) +∇ · q+ trace(P∇u) = 0 ,

x ∈ Ω ∈ R2, t ≥ 0.

Assume the exact data of all solution variables are accessible at the boundary
∂Ω, whereas the (sparse) interior observations are only available for ρ and ρu.
We aim to recover the data of the pressure tensor, P ∈ R2×2, and subsequently
the divergence of heat flux, ∇ · q, using the continuous data assimilation. By
evolving the corresponding nudged system along the lines of (1.4), one recovers the
divergence of the pressure, g = −∇ · P, which contains the ‘mixture’ of x− and y−
derivatives. Hence, the recovery of P requires solving the divergence equations: −(∂xp11 + ∂yp21) = g1

−(∂xp12 + ∂yp22) = g2

, p12 = p21,

which, in general, are under-determined.
Indeed, denote P = [P1,P2] with Pj = [p1j , p2j ]

⊤, j = 1, 2, the pressure term can
be represented via the Helmholtz decomposition:

(5.1) Pj = ∇ϕj +Rj , Rj = [R1j , R2j ]
⊤ ,
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where

(5.2a)

 −∆ϕj = gj , x ∈ Ω ,

ϕj = 0, x ∈ ∂Ω ;

and

(5.2b)

 ∇ ·Rj = 0, x ∈ Ω ,

Rj · n = Pj · n−∇ϕj · n, x ∈ ∂Ω .

Here n = [n1, n2]
⊤ is the unit outer normal vector at the boundary. Moreover, the

symmetry condition p12 = p21 yields

(5.3) R12 = R21 + ∂yϕ1 − ∂xϕ2.

Note that the Poisson equations (5.2a) for the potentials ϕ1 and ϕ2 are well-posed.
Therefore, the non-uniqueness of the pressure arises from the non-uniqueness of the
solenoidal vector fields Rj .

For practical applications, a possible option is to generate approximate solutions
with the physics-informed neural networks (PINNs) [38]. Due to the simple
linear structure of the divergence equations, the PINNs can be expected to work
effectively. As an example, consider the exact pressure field P with

p11 = 1 + 0.5 sin(x) cos(y) ,

p12 = p21 = 0.2 sin(x+ y) ,

p22 = 1 + 0.3e−0.1y cos(x) sin(y) ,

(x, y) ∈ Ω = [0, 2π]2.

Based on the divergence at the interior, ∇ · P1 = ∂xp11 + ∂yp12 and ∇ · P2 =
∂xp12 + ∂yp22, and the ground truth boundary data, P|∂Ω, we reconstruct the
pressure using the multi-outputs neural network,

N (x, y; θ) = [pNN
11 , pNN

12 , pNN
22 ]⊤,

where N (·; θ) is a fully connected network with 3 hidden layers parameterized
by θ. Each hidden layer has 20 neurons and the output is activated by the
hyperbolic tangent function. The parameters of the neural network are optimized
by minimizing the mean square loss,

MSE(θ) =
1

N

N∑
j=1

|∂xpNN
11 (xj , yj) + ∂yp

NN
12 (xj , yj)−∇ · P1(xj , yj)|2

+
1

N

N∑
j=1

|∂xpNN
12 (xj , yj) + ∂yp

NN
22 (xj , yj)−∇ · P2(xj , yj)|2

+
1

Nb

2∑
m,n=1

Nb∑
j=1

|pNN
mn (xb

j , y
b
j)− pmn(x

b
j , y

b
j)|2,

where {(xj , yj)}Nj=1 and {(xb
j , y

b
j)}

Nb
j=1 are training points at the interior and the

boundary. In our computation, we apply 30 × 30 uniformly distributed training
points at the interior. At each of the four boundaries, 30 training points are
employed to enforce the boundary conditions. We train the network using LBFGS
in Pytorch until the relative change in the loss is smaller than 10−4. As observed
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from the results displayed in Figure 5.1, the neural network solutions attain a

reasonably good accuracy. The relatively errors are
||pNN

11 − p11||1
||p11||1

= 1.54× 10−3,

||pNN
12 − p12||1
||p12||1

= 7.05× 10−3,
||pNN

11 − p11||1
||p11||1

= 1.51× 10−3.

In general, to resolve the potential non-uniqueness issue, a regularization term
can be added that favors the solution with special property. For instance, the
solution with the smallest oscillation is favored by adding a penalty term λ||∇P||22,
where λ > 0 is a shrinking regularization parameter; by introducing the penalty
λ||R||22, where R = [R1;R2] are the divergence-free vector fields in the Helmholtz
decomposition (5.1), one minimizes the projection of pressure onto Im(∇)⊥ =
ker(∇·) = {V ∈ R2×2 : ∇ · V = 0, V · n|∂Ω = P · n|Ω}.

Although using the PINNs provides a possible solution approach, one should
be aware of the caveat in terms of the expensive computational cost. Further
investigations are needed for more efficient data reconstruction from divergence
information.
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