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Abstract

To meet the demands of instantaneous control of instabilities over long time horizons in plasma
fusion, we design a dynamic feedback control strategy for the Vlasov–Poisson system by constructing
an operator that maps state perturbations to an external control field. In the first part of the paper,
we propose learning such an operator using a neural network. Inspired by optimal control theory for
linearized dynamics, we introduce a low-rank neural operator architecture and train it via adjoint state
method. The resulting controller is effective at suppressing instabilities well beyond the training time
horizon. To generalize control across varying initial data, we further introduce a novel cancellation-
based control strategy that removes the destabilizing component of the electric field. This approach
naturally defines an operator without requiring any training, ensures perturbation decay over infinite
time, and demonstrates strong robustness under noisy feedback. Numerical experiments confirm the
effectiveness of the method in both one- and multidimensional settings.
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1 Introduction

Long-term suppression of plasma instabilities remains a major challenge in achieving controlled nuclear
fusion. Without adequate confinement, the plasma can gradually deviate from its desired state, potentially
leading to a breakdown of the reaction or a significant reduction in fusion efficiency. For example, the
two-stream instability can cause unwanted beam scattering and loss of focus [31]. Likewise, the bump-on-
tail instability, often driven by runaway electrons or radiofrequency heating, can reduce plasma heating
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efficiency, degrade confinement, and cause significant energy deposition on the reactor walls. Therefore,
it is crucial to control such instabilities through the application of carefully designed external forces.

To place the problem on a more concrete footing, we consider the Vlasov–Poisson (VP) system, which
is fundamental for describing collisionless plasma dynamics:

∂tf(x,v, t) + v∇xf(x,v, t) + (E(x, t) +H(x, t)) · ∇vf(x,v, t) = 0 ,

E(x, t) = −∇xΦ(x, t), ∇xE(x, t) = −∆Φ(x, t) = ρ(x, t)− ρion ,

ρ(x, t) =
∫
f(x,v, t)dv .

(1.1)

Here f(x,v, t) is particle density at location x, time t, with velocity v, E(x, t) is the self-generated
electric field, ρ(x, t) is the charge density, and ρion is the constant density of background ion. H(x, t) is
the external electric field that will be used for the control purposes.

For ease of discussion, we assume that the desired confined plasma state is described by the distribution
f(x,v), which is an equilibrium of the system (1.1) when H = 0. There has been an extensive study on
the stability or instability of the equilibrium state f(x,v) upon perturbation. In particular, when f(x,v)
depends only on v and follows a Maxwellian distribution, i.e., f(x,v) = f(v) ∝ e−|v−u|2/2T for some given
bulk velocity u and temperature T , this equilibrium is stable, in the sense that small perturbations in
plasma beams lead to the damping of electrostatic waves, a phenomenon known as the Landau damping
[19, 27]. In contrast, when f(x,v) = f(v) is a mixture of two Gaussians, the equilibrium becomes unstable;
that is, an initial disturbance in the beams is amplified, leading to undesirable growth of the perturbation
and the transfer of energy from the plasma beams to electrostatic waves [4]. Additionally, (1.1) can also
admit spatially inhomogeneous equilibrium, which may be unstable [13] under certain conditions.

To suppress the growth of perturbation over a long time horizon t ∈ [0, T ], we aim to design an
external electric field H(x, t) via the PDE-constrained optimization framework:

min
H∈L2

x,t

J (T ;H) s.t. f solves (1.1) . (1.2)

The loss functional J (T ;H) defines the control objective, which may include terms such as a running loss
1

2

∫ T

0
||f(t;H)− f ||2x,vdt, a terminal loss

1

2
||f(T ;H)− f ||2x,v, and potentially others. A recent study has

analyzed how the choice of objective influences the optimization landscape [11]. The parameterization of
H is also crucial for effective control. Directly assuming H to be an arbitrary function of x (or of x and t)
typically leads to optimization landscapes with many local minima. As observed in [8], a parameterization
of the form

H(x, t;α) =
r∑

k=1

αkϕk(x, t) (1.3)

with αk as the parameters to be optimized, not only reduces the dimensionality of the control problem
but also tends to convexify the optimization landscape. A moment-based formulation was also proposed
in [24], offering a potential reduction of the dimension of (1.2).

Despite the above efforts in selecting the objective function J or the parameterization of H, a key
drawback remains: the optimized field H is only effective over the time interval [0, T ]. To extend
its usefulness beyond T , one would need to solve (1.2) again, which is computationally expensive and
incompatible with the practical requirement of near-instantaneous control. For this reason, dynamical
feedback control appears to be a more practical alternative, provided such a control can be constructed.
Several studies have investigated this direction. One approach is to determine a control H(t,x) over short
intervals [t, t+∆t], where the objective function is restricted to this local time window, instead of seeking
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a control valid over the entire time span [0, T ]. By discretizing the problem and solving the corresponding
optimality conditions, an exact relation between H and the solution f can be derived, which then serves as
the feedback law [1]. Another line of work employs reinforcement learning, which assumes the underlying
model is unknown and instead learns the feedback law in a data-driven manner [6, 30]. Similar strategies
have also been applied in plasma shaping [32, 5] and reactor design optimization [28, 3, 16].

In this paper, we propose a novel approach to deriving the feedback control law by designing and
learning a neural operator. Specifically, we aim to learn a mapping from deviation of the particle
distribution from equilibrium δf(t,x,v) := f(t,x,v)−f(t,x,v) to H(t,x) such that the control objective
J is effectively minimized. This constitutes a mapping between function spaces: from the space in which
δf resides to the space where H is defined, i.e., H[δf ](t,x). A natural way to approximate such a mapping
is through a neural operator, which refers to a neural network that is designed to learn a mapping between
function spaces, i.e., an operator, instead of a function between Euclidean spaces. Neural operators have
been extensively studied in recent years across a wide range of applications. Several architectures have
been proposed, including the Fourier Neural Operator (FNO) [22, 17, 21], Low-Rank Neural Operator
(LNO) [18], Graph Neural Operator (GNO) [2, 23], and DeepONet [25, 33, 20]. Comprehensive overviews
can be found in two recent review articles [26, 18].

To construct such an operator for our setting, we design a specific architecture guided by linear optimal
control theory. In particular, we first derive a feedback control law for the linearized system, and then
use it as a blueprint to design a neural operator for the general nonlinear problem. The neural operator
is then trained via an adjoint-based method. The resulting learned neural operator remains effective over
much longer time horizons than directly learning the control field H without feedback information, and it
is more robust to noise. Finally, to extend the control performance to arbitrarily long times and arbitrary
initial perturbations, we introduce a quasi-optimal law based on a cancellation principle.

The rest of the paper is organized as follows. In the next section, we construct a neural operator to
obtain the feedback law, with its structure inspired by linear optimal control theory and its implementation
carried out through an adjoint-based method. The effectiveness of the resulting neural operator is
demonstrated through extensive examples in Section 3. In Section 4, we propose a novel universal feedback
law based on a cancellation argument. This law can be viewed as a special case of a neural operator and
is training-free. Numerical experiments further confirm the effectiveness of this approach.

2 Dynamical feedback control with low-rank neural operator

In this section, we investigate the structure of the feedback control δf 7→ H. For clarity of presentation, we
focus on the one-dimensional case, and assume a spatially homogeneous equilibrium, i.e., f(x, v) ≡ f(v),
although the derivations extend naturally to higher dimensions.

2.1 Operator-based external field

To gain primary insight about the appropriate structure of the mapping from deviation δf to the control
field H(δf(t, x, v))(t, x):

H(·)(·) : δf 7→ H ,

we first consider the following linearized Vlasov–Poisson system around the target equilibrium f(v).
More specifically, write f(t, x, v) = f(v)+ δf(t, x, v), and assume that ∥δf∥ ≪ ∥f∥, we have the following
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linearized equation for the perturbation δf :
∂tδf + v∂xδf + (δE +H)∂vf = 0 ,

δE(x, t) = −∂xΦ(x, t), −∂2xΦ(x, t) = δρ(x, t) ,

δρ(x, t) =
∫∞
−∞ δf(x, v, t)dv .

(2.1)

Assuming the control objective takes the form:

J (δf,H) =

∫ ∞

0

1

2
||δf(·, ·, t)||2x,v +

γ

2
||H(·, t)||2xdt, (2.2)

where γ > 0 is the weight that penalizes the magnitude of the control ||H||. We can define the
corresponding Hamiltonian:

H(δf,H, λ) =

∫∫
1

2
δf(x, v, t)2dxdv+

∫
γ

2
H(x, t)2dx−

∫∫
λ(x, v, t)

(
v∂xδf+(δE+H)∂vf

)
dxdv. (2.3)

Let G(x1, x2) be the Green’s function of the Poisson equation with suitable boundary conditions, the
perturbation of the self-generated field δE can be written as

δE(x, t) =

∫
∂x1G(x, y)δρ(y, t)dy =

∫∫
∂x1G(x, y)δf(y, v

′, t)dydv′ .

By interchanging of variables (x, v) and (y, v′), we obtain∫∫
λ(x, v, t)δE(x, t)∂vf(v)dxdv =

∫∫ [ ∫∫
∂x1G(y, x)λ(y, v

′, t)∂vf(v
′)dydv′

]
δf(x, v, t)dxdv.

Then the Hamiltonian (2.3) can be rewritten as

H(δf,H, λ) =

∫∫
1

2
δf(x, v, t)2dxdv +

∫
γ

2
H(x, t)2dx

+

∫∫ [
v∂xλ(x, v, t)− ⟨∂x1G(·, x),

∫
λ(·, v′, t)∂vf(v′)dv′⟩

]
δf(x, v, t)dxdv

−
∫∫

λ(x, v, t)H(x, t)∂vf(v)dxdv.

By the Pontryagin Maximum Principle, the optimal control, H∗, and the corresponding adjoint variable,

λ∗, satisfy the conditions ∂tλ = − ∂H
∂δf

and
∂H
∂H

= 0, that is,
∂tλ

∗ + v∂xλ
∗ − ⟨∂x1G(·, x),

∫
λ∗(·, v′, t)∂vf(v′)dv′⟩ = −δf ,

γH∗ −
∫
λ∗∂vfdv = 0 .

(2.4)

The first equation shows the linear dependence of λ∗ on δf , and the second equation indicates the linear
dependence of H∗ on λ∗. Consequently, the optimal control H∗ for the linearized system (2.1) is a linear
functional of the perturbation δf , although an explicit representation of the mapping δf 7→ H∗ is not
readily available.

Nevertheless, this linear dependence motivates us to construct the feedback control mechanism through
a single-layer low-rank neural operator [18]:

H[δf(t)](x; θ) =

r∑
k=1

ϕk(x; θϕ)

∫∫
ψk(y, v; θψ)δf(y, v, t)dydv, θ = {θϕ, θψ}. (2.5)
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Here, ϕNN (x; θϕ) :=
(
ϕ1(x; θϕ), ϕ2(x; θϕ), . . . , ϕr(x; θϕ)

)
is a learnable mapping R to Rr consisting of basis

functions parameterized by θϕ, while the kernel ψNN (x, v; θψ) =
(
ψ1(x, v; θψ), ψ2(x, v; θψ), . . . , ψr(x, v; θψ)

)
is a learnable mapping from R2 to Rr, parameterized by θψ. In the following, we will parameterize ϕNN and
ψNN by neural networks. When considering a bounded domain x ∈ Ω with specific boundary conditions,
it is preferable for the basis ϕNN (x; θϕ) to explicitly encode these boundary conditions. We emphasize
that, unlike (1.3), the form (2.5) introduces time dependence in H through δf . This provides a more
effective way to incorporate time dependence into the control than simply allowing α to vary with time
in (1.3). The latter approach not only increases the dimensionality of the optimization problem, since
discretizing time into N steps enlarges the parameter space by a factor of Nt, but may also fail to capture
meaningful time dependence, as direct optimization can yield coefficients that vary little with t.

In practical computations, we have perturbations only on the computational grid:

δf∆ = {δf(xi, vj)}1≤i≤Nx,1≤j≤Nv ∈ RNxNv .

Then the nodal values of the external field H∆ = {H[δf∆](xi)}1≤i≤Nx can be represented by:

H∆
i =

r∑
k=1

ϕk(xi)
∑

1≤l≤Nx
1≤m≤Nv

ψk(xl, vm)δf(xl, vm)∆x∆v, 1 ≤ i ≤ Nx .

Equivalently, this can be written in the matrix form as

H∆ =
(
[ϕ∆r×Nx

]⊤ψ∆
r×NxNv

∆x∆v
)
δf∆, (2.6)

where ϕ∆r×Nx
= [ϕk(xi)]k,i and ψ∆

r×NxNv
= [ψk(xi, vj)]k,i,j are two projection matrices.

Note that (2.6) is reminiscent of the well-known Linear Quadratic Regulator (LQR) [15, 14] for linear
ODE systems, where the optimal control problem is given by

min
a(t)

∫ ∞

0
g(t)⊤Qg(t) + a(t)⊤Ra(t)dt ,

s.t.
dg

dt
= Ag(t) +Ba(t) ,

where Q and R are positive definite matrices. If we assume that the optimal control takes the form
a(t) = −Kg(t), then the feedback matrix K can be solved from the algebraic Riccati equation,

K = R−1B⊤P ,

A⊤P + PA− PBR−1B⊤P +Q = 0.

In the context of the semi-discrete ODE arising from the linearized equation (2.1), the controller (2.6)
corresponds to a linear projection from δf∆ ∈ RNxNv to H∆ ∈ RNx , constructed using low-rank matrices.

We note that, although the exact Vlasov–Poisson system is nonlinear with respect to δf , a properly
optimized linear controller can effectively suppress perturbations over an extended period. This will be
demonstrated through numerical experiments in Section 3.

2.2 Optimization with adjoint state method

Using the form (2.5) for our neural operator that maps δf to H, we need to define a loss function to
determine the optimal basis and kernels so that the control remains effective over an extended period
and for a wide range of perturbations. Ideally, the control objective should consider a sufficiently diverse
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family of initial perturbations, such that the perturbations evolving over time remain within the subspace
generated by this initial family. At the same time, the control horizon should be long enough to capture
and suppress any instabilities that may arise. In practice, this is achieved by adding noise to a given initial
condition, as will be explained in detail in Section 3.1. For simplicity of presentation, here we consider
the control problem for a single initial condition and define the loss function over a sufficiently long time
interval [0, T ].

Specifically, we optimize the external field operator Hθ[δf ], through the following problem,

min
θ

J (θ) =
1

2

∫ T

0
||f(·, ·, t;Hθ)− f(·, ·)||2x,vdt (2.7a)

s.t.


∂tf + v∂xf + (E[f ] +Hθ[δf ])∂vf = 0 ,

E = −∂xΦ, −∂2xΦ = ρ− ρion ,

ρ =
∫
fdv .

(2.7b)

Note that the running loss (2.7a) corresponds to a finite-time truncation of the quadratic loss (2.2) with
γ = 0. In our experiments, we observed that including the control penalty

γ

2
||H||22 does not lead to any

improvement in computational performance.
To compute the gradient ∇θJ (θ), we introduce the Lagrangian multiplier,

L(θ;λ) = 1

2

∫ T

0
||f(t;Hθ[δf ])− f ||2x,vdt+

∫ T

0

∫∫
λ(x, v, t)

(
∂tf + v∂xf + (E[f ] +Hθ[δf ])∂vf

)
dxdvdt .

Note that when f satisfies the constraint PDE (2.7b), we have L(θ;λ) = J (θ), and consequently, ∇θL =
∇θJ , for arbitrary λ. Integration by parts yields

∇θJ = ∇θL =

∫ T

0

∫∫
(f(x, v, t)− f(x, v))∇θf(x, v, t)dxdvdt+

∫∫
λ(x, v, t)∇θf(x, v, t)|Tt=0dxdv

−
∫ T

0

∫∫ (
∂tλ+ v∂xλ+ (E[f ] +Hθ[δf ])∂vλ

)
∇θfdxdvdt

+

∫ T

0

∫∫ [
∇θE(x, t) +H[∇θδf(t)](x; θ) + (∇θH)[δf(t)](x; θ)

]
λ(x, v, t)∂vf(x, v, t)dxdvdt.

By assuming that λ solves the adjoint equation

∂tλ+ v∂xλ+ (E[f ] +Hθ[δf ])∂vλ = δf, λ(x, v, T ) = 0, (2.8)

the gradient of the loss function reduces to

∇θJ =

∫ T

0

∫∫ [
∇θE(x, t) +Hθ[∇θδf(t)](x; θ) + (∇θHθ)[δf ](x; θ)

]
]λ(x, v, t)∂vf(x, v, t)dxdvdt. (2.9)

Note that the adjoint equation (2.8) and the corresponding gradient (2.9) may appear slightly different
from those obtained using the classical adjoint state method. In the classical approach as is done in [8],
one computes ∇θE = δE

δf ∇θf and δE
δf enters the adjoint equation (2.8), while ∇θE itself does not appear

in (2.9). Likewise, the term Hθ[∇θδf(t)](x; θ) can be eliminated from (2.9) by explicitly writing:

Hθ[δf ](x; θ) =
∑
r

ϕr(x)

∫∫
ψr(y, v)δf(y, v)dydv

=
∑
r

ϕr(x)

∫∫
ψr(y, v)(f(y, v)− f(v))dydv
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and then

Hθ[∇θδf ](x; θ) =
∑
r

ϕr(x)

∫∫
ψr(y, v)∇θf(y, v)dydv .

Consequently
∑

r ϕr(x)ψr(y, v) enters the adjoint equation (2.8), while Hθ[∇θδf ](x; θ) no longer appears
in (2.9).

Based on this argument, in practice, we simplify the gradient by freezing the perturbation state and
using the following approximation1:

∇θJ (θ) ≈
∫ T

0

∫∫
(∇θH)[δf(t)](x; θ)λ(x, v, t)∂vf(x, v, t)dxdvdt. (2.10)

This way, the gradient computation follows the classical adjoint state method, with the only difference
being a slight modification in the adjoint equation.

This approximation depends only on the adjoint variable and the explicit parameterization of the
control kernel, enabling efficient updates using standard optimizers such as gradient descent or Adam.
Our experiments indicate that the approximate gradient (2.10) performs well for moderate perturbations.
Modern deep learning packages such as torchdiffeq may be employed to implement auto-differentiation
based on semi-discrete ODEs.

To achieve high efficiency in long-term simulations, we will numerically solve the Vlasov-Poisson
equations (2.7b) using the semi-Lagrangian method, which is fully explicit and not constrained by a CFL
condition on the time step:

• Compute f (1)(x, v) = f(x− ∆t
2 v, v, t

n).

• Compute f (2)(x, v) = f (1)
(
x, v − (E[f (1)] + H[δf (1)])∆t

)
, with E[f (1)] = ∇(−∆)−1ρ(1), ρ(1)(x) =∫

f (1)(x, v)dv .

• Compute fn+1(x, v) = f (2)(x− ∆t
2 v, v).

The solution fn+1(x, v) at the final stage is then taken as the approximation to f(x, v, tn+1). When
computing the discrete solution on the mesh {(xi, vj)}, we apply bilinear interpolation to obtain the nodal
values on the departure grids, {(xi− ∆t

2 vj , vj)} for the first and third stages and {
(
xi, vj − (E[f (1)](xi) +

H[δf (1)](xi))∆t
)
} for the second stage. Similarly, the backward time-stepping of the adjoint equation

(2.8) can be implemented with

• Compute λ(−1)(x, v) = λ(x+ ∆t
2 v, v, t

n).

• Compute λ(−2)(x, v) = λ(−1)
(
x, v + ∆t

2 (E[fn−
1
2 ] + H[δfn−

1
2 ])

)
, fn−

1
2 =

1

2
(fn + fn−1), δfn−

1
2 =

1

2
(δfn + δfn−1) .

• Compute λ(−3)(x, v) = λ(−2)(x, v)−∆tδfn−
1
2 (x, v).

• Compute λ(−4)(x, v) = λ(−3)
(
x, v + ∆t

2 (E[fn−
1
2 ] +H[δfn−

1
2 ])

)
.

1We point out that the approximation (2.10) is constructed based on the small perturbation assumption δf ≪ 1. However,
it also turns out to work well even when the perturbation is moderately large. If the system perturbation grows rapidly,
it is not always guaranteed that the convergence with the gradient approximation is stable, in which case one may resort
to complete auto-differentiation. Nevertheless, our experiments also indicate that the convergence of the latter can be
sometimes unstable either. Therefore, the appropriate optimization approach can be case-by-case.
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• λn−1(x, v) = λ(−4)(x+ ∆t
2 v, v).

In the following numerical tests, we employ the adjoint-based method described above, except for one
bump-on-tail example where we use torchdiff to obtain time-independent control. We emphasize that
this adjoint-based method has its advantages, as direct automatic differentiation can be computationally
expensive, may introduce significant errors, and, in some cases, result in poorer convergence stability
compared to gradient approximation.

3 Numerical experiments

3.1 Computational setups

We examine the effectiveness of operator-based feedback control (2.5) through numerical computations.
In all test cases, the computational domain is chosen as (x, v) ∈ [0, 10π]× [−8, 8], with periodic boundary
conditions applied at x = 0 and x = 10π. The background ion density is set to ρion = 1 and the
self-generated electric field is computed by

E(x, t) = −∂xΦ(x, t),

−∂2xΦ(x, t) = ρ(x, t)− 1, ρ(x, t) =
∫
f(x, v, t)dv ,

Φ(0, t) = Φ(10π, t) = 0.

The discrete solutions are computed on the uniform mesh with Nx = 100 and Nv = 200 grids in the x and
v directions, respectively. The semi-Lagrangian time integration of the forward and backward equations
(2.7b) and (2.8) are implemented with time step ∆t = 0.2.

To enforce exact periodic boundary conditions, rather than learning the basis, we fix the basis
{ϕk(·)}rk=1 in (2.5) using r = 31 trigonometric functions,

{ϕk(x)}31k=1 =
{
1, sin( l5x), cos(

l
5x)

}
1≤l≤15

.

The integral kernel, ψNN (x, v; θψ) = (ψ1(x, v), ψ2(x, v), · · · , ψ31(x, v)), remains a multi-output neural
network mapping R2 to R31. Here we set up ψNN using a 4-layer fully connected neural network with
the distribution of neurons 2 − 64 − 32 − 31. The output of each hidden layer is activated by the ReLU
function before being fed to the next layer. In all experiments, the controller H[δf ] is optimized with

respect to the running loss
1

2

∫ T

0
||f(t)− f ||22dt with T = 30, following the lines of Section 2.2.

To stabilize training in the early stages, we initialize the controller close to zero by setting the
parameters of the output layer of ψNN to zeros. The parameters θψ are then updated using the approximate
gradient (2.10) over 3000 iterations. For efficient convergence, we first perform 200 steps of Adagrad as a
preprocessing phase, followed by Adam iterations to accelerate training in the later stages. 2

To expand the exploration of the state space and prevent the controller from overfitting to data within
the finite time horizon t ∈ [0, T ], we add a perturbation fp to the initial data f0 at each iteration when
computing the gradient, defined as

fp(x, v) = εp

kp∑
k=1

lp∑
n=1

ωknϕ̂k(x)ĥn(v) .

2We point out that the combination of Adagrad and Adam iterations is employed due to the fact that the Adagrad
method, with fast gradient decay, converges quickly at the early stage but gets stuck afterwards. In contrast, the Adam
method can be oscillatory under randomly initialized network parameters, but it helps accelerate iterations after Adagrad
preprocessing. Thus, combining optimizers with different features would better ensure the stability and efficiency of training
at different phases. The optimal choice of optimizers and/or combinations will be left for future discussions.
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Here {ϕ̂(x)} and {ĥl(v)} are orthonormal basis in x and vdirections, respectively. The weight vector, ω
= {ωkl}1≤k≤kp,1≤n≤np ∈ Rkp×np , is randomly and uniformly sampled from the kp × np−dimensional unit
ball. In our computations, we construct fp using the normalized trigonometric functions on x ∈ [0, 10π],

{ϕ̂k(x)}11k=1 =

{√
1

10π
,

√
1

5π
sin( l5x),

√
1

5π
cos( l5x)

}
1≤l≤5

,

and the orthonormal Hermite basis functions on v ∈ (−∞,∞),

hn(v) =

√
1√
2πn!

Hen(v) exp(−v2

4 ), 0 ≤ n ≤ 5.

Here, the Hermite polynomials Hen(v), can be computed recursively,

He0(v) = 1,

Hen+1(v) = vHen(v)− nHen−1(v), n ≥ 1.

The magnitude of fp is set to εp = 10−3.
At the end of training, we use the future loss, ||f(2T )− f ||2, as a measure of generalizability to select

the best iteration. The parameters corresponding to this iteration are then adopted as the final trained
model. This approach differs from simply taking the parameters at the end of the 3000 iterations. Because
our training introduces noise, the iterations may explore multiple local minima rather than converge to a
single one. Therefore, the training should be viewed as a search process, and the historically best result
is used.

To demonstrate the benefit of introducing dynamical feedback control, we will also include the time-
independent counterpart for comparison, given by

Hindep(x) =
15∑
k=1

θk sin(
k
5x) +

15∑
k=0

θk+16 cos(
k
5x). (3.1)

In this case, the gradient ∇θHindep(x; θ) reduces to (ϕ1(x), ϕ2(x), · · ·ϕ31(x))⊤ in the gradient (2.10).

3.2 Two-stream instability

We consider the following two-stream distribution as the target equilibrium:

f(v) =
1

2
√
2π

exp(− (v−v̄)
2 ) +

1

2
√
2π

exp(− (v+v̄)
2 ), v̄ = 2.4.

Assume that the Vlasov-Poisson system is initialized with the perturbed state

f0(x, v) = (1 + ε cos(x5 ))f(v), x ∈ [0, 10π], ε = 0.001.

The two-stream equilibrium is known to be unstable, with perturbations amplified by the self-generated
electric field. Our goal is to suppress this instability using an operator-based external field. The training
procedure follows the approach outlined in Section 3.1, employing a learning rate of lr = 5× 10−3 for the
Adagrad iterations and lr = 5× 10−4 for the subsequent Adam iterations.

Figure 3.1 shows the evolution of the L2−state perturbation,
1

2

∫∫
|f(x, v, t) − f(v)|2dxdv, and the

electric energy of the self-generated field,
1

2

∫
E(x, t)2dx, over the time interval t ∈ [0, 70]. It is observed

9



that the time-independent external field, optimized over t ∈ [0, 30], effectively suppresses the perturbation
within the optimization interval but quickly loses effectiveness as time progresses. In contrast, the
dynamical feedback control improves stability within the optimization interval and maintains effectiveness
well beyond it. This behavior is further confirmed by the particle state distribution f , shown in Figure
3.2. Figure 3.3 depicts the external fields at different time points, revealing that for t > T , the structure
of the operator-based external field can be notably different from that of Hindep.

(a) L2−perturbation (b) electric energy

Figure 3.1: Two-stream instability. History of L2−state perturbation and electric energy over t ∈ [0, 70].
No external field (red lines) vs time-independent control (blue lines) vs dynamical feedback control (green
lines). The vertical black line marks the terminal time of optimization.

3.3 Bump-on-tail instability

We also examine the performance of our operator-based feedback control when applied to suppress the
bump-on-tail instability. The following target equilibrium is considered:

f(v) =
ω1√
2π

exp(− (v−v̄1)2
2 ) +

ω2√
2πvt

exp(− (v−v̄2)2
2vt

).

In our experiment, we set ω1 = 0.9, ω2 = 0.1, v̄1 = −2, v̄2 = 3.5, vt = 0.25. We initialize the VP system
by imposing a small perturbation to the equilibrium,

f0(x, v) = f(v) +
εω2√
2πvt

exp(− (v−v̄2)2
2vt

) sin(x5 ), x ∈ [0, 10π], ε = 0.003,

which leads to the destruction of the high-velocity thin tail as time develops. The controller network
is trained with the learning rate lr = 2 × 10−3 for Adagrad preprocessing and lr = 3 × 10−4 for Adam
iterations. We compare the solutions produced by the time-independent control (3.1) and the feedback
control (2.5) in Figures 3.4–3.5, clearly demonstrating the superior effectiveness of the feedback control.

3.4 Robustness under noisy feedback

In practical applications, measured data may be inaccurate, potentially undermining the effectiveness of
feedback control. In this section, we test the robustness of our algorithm under noisy measurements. The

10



(a) no H, t = 0 (b) no H, t = 35 (c) no H, t = 70

(d) H time-independent, t = 0 (e)H time-independent, t = 35 (f) H time-independent, t = 70

(g) H feedback, t = 0 (h) H feedback, t = 35 (i) H feedback, t = 70

Figure 3.2: Two-stream instability. Evolution of f(x, v, t). No external field (first row) vs time-
independent control (second row) vs dynamical feedback control (third row).

operator-based controllers are the same as those obtained in Sections 3.2 and 3.3, except that the external
field, H[δfσ(t)](x), perceives noisy feedback from the environment,

δfσ(x, v, t) = δf(x, v, t) + σNx,v,t . (3.2)

Here {Nx,v,t}x,v,t are independent and identically distributed according to the standard normal distribution.
Figures 3.7 – 3.8 show simulations of the two-stream instability, with measurements δf affected by

noise of varying strengths. The initial particle state perturbation has magnitude ||δf0||∞ ≈ 1.99×10−4. In
Figure 3.7 we observe that when the noise is small (compared to the initial perturbation), the operator-
based external field maintains a clear advantage in terms of providing effective long-time instability
control. As the magnitude of the noise increases to σ = 1 × 10−4 (≈ 50%||δf0||∞) the performance of
H[δfσ] is notably deteriorated. However, for t > 30, our feedback control construction can still suppress
the growth of the perturbation much better than the time-independent counterpart. As shown in Figure
3.8, the particle distribution generated by noisy feedback control remains relatively close to the target
equilibrium up to t = 70. Figures 3.9 – 3.10 show the computations for the bump-on-tail instability
(||δf0||∞ ≈ 2.39×10−4). Although the inaccurate measurement of perturbation weakens the performance
of our algorithm, the control remains effective over a long time period, even under relatively large noise.

11



Figure 3.3: Two-stream instability. External fields by time-independent control and dynamical feedback
control.

(a) L2−perturbation (b) electric energy

Figure 3.4: Bump-on-tail instability. History of L2−state perturbation and electric energy over t = 70.
No external field (red lines) vs time-independent control (blue lines) vs dynamical feedback control (green
lines). The vertical black line marks the terminal time of optimization.

4 A quasi-optimal universal control

4.1 A cancellation-based construction

While the PDE-constrained optimization problem (2.7) offers a flexible framework for optimizing the
controller of the Vlasov–Poisson system (and even more general plasma models such as the magnetically
confined Vlasov–Maxwell equations), the optimal control for the nonlinear system (1.1) can be sensitive
to the choice of the initial dataset f0 and the time horizon T . If the dataset is not exhaustive or T
is not sufficiently large, the resulting control may lose effectiveness over time, necessitating retraining
and incurring significant computational cost. To address this limitation, we propose a universal operator
architecture that reduces such dependence. Specifically, we develop a quasi-optimal control strategy based
on electric field cancellation, which depends only on the target equilibrium and can therefore be applied
robustly across a broad range of initial conditions.
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(a) no H, t = 0 (b) no H, t = 35 (c) no H, t = 70

(d) H time-independent, t = 0 (e)H time-independent, t = 35 (f) H time-independent, t = 70

(g) H feedback, t = 0 (h) H feedback, t = 35 (i) H feedback, t = 70

Figure 3.5: Bump-on-tail instability. Evolution of particle distribution f(x, v, t). No external field (first
row) vs time-independent control (second row) vs dynamical feedback control (third row).

Subtracting the equilibrium f(x, v), which satisfies v∂xf + E∂vf = 0, from the original VP system
(1.1), we obtain the evolution equation for δf(x, v, t) = f(x, v, t)− f(x, v):

∂tδf + v∂xδf + E∂vδf + (δE +H)∂vf = 0, (4.1)

where E(x) is the self-generated electric field of the equilibrium. The electric field perturbation, δE =
E − E, can be written in the operator form:

δE[δf(t)](x) = −∂x(−∂2x)−1δρ(x, t), δρ(x, t) =

∫
δf(x, v, t)dv.

In particular, when the analytical form of the Green’s function G(x, y) is available for the Poisson equation
with specific boundary condition, δE can be conveniently evaluated with

δE[δf(t)](x) = −
∫
∂xG(x, y)δρ(y, t)dy = −

∫∫
∂xG(x, y)δf(y, v, t)dvdy. (4.2)

For instance, for the Poisson equation defined on the interval x ∈ [a, b] with zero boundary data (which
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Figure 3.6: Bump-on-tail instability. External fields by time-independent control and dynamical feedback
control.

(a) σ = 2× 10−5 (0.1 · ||δf0||∞) (b) σ = 5× 10−5 (0.25 · ||δf0||∞) (c) σ = 1× 10−4 (0.5 · ||δf0||∞)

Figure 3.7: Two stream instability with noisy feedback. History of L2−state perturbation over t ∈ [0, 70].
No external field (red lines) vs time-independent control (blue line) vs dynamical feedback control (green
lines) under varying noise magnitudes σ. The vertical black line marks the terminal time of optimization.

(a) σ = 2× 10−5 (0.1 · ||δf0||∞) (b) σ = 5×10−5 (0.25 · ||δf0||∞) (c) σ = 1× 10−4 (0.5 · ||δf0||∞)

Figure 3.8: Two stream instability with noisy feedback. Particle distribution f(x, v, t) at t = 70 generated
by dynamical feedback control under varying noise magnitude σ.

is the computational setup in Section 3.1), the Green’s function is explicitly given by:

G(x, y) =


(x− a)(b− y)

b− a
, a ≤ x ≤ y ≤ b ,

(y − a)(b− x)

b− a
, a ≤ y ≤ x ≤ b .14



(a) σ = 2.4× 10−5 (0.1 · ||δf0||∞) (b) σ = 6× 10−5 (0.25 · ||δf0||∞) (c) σ = 1.2× 10−4 (0.5 · ||δf0||∞)

Figure 3.9: Bump-on-tail instability with noisy feedback. History of L2−state perturbation. No external
field (red lines) vs time-independent control (blue line) vs dynamical feedback control (green lines) under
varying noise magnitude σ. The vertical black line marks the terminal time of optimization.

(a) σ = 2.4×10−5 (0.1 · ||δf0||∞) (b) σ = 6×10−5 (0.25 · ||δf0||∞) (c) σ = 1.2×10−4 (0.5 · ||δf0||∞)

Figure 3.10: Bump-on-tail instability with noisy feedback. Particle distribution f(x, v, t) at t = 70
generated by dynamical feedback control under varying noise magnitude σ.

Alternatively, efficient algorithms such as fast Fourier transforms [10, Chapter 8], multigrid methods
[34, 12], and fast multipole methods [29, 9] can be applied to solve the Poisson equation directly.

Physically, perturbations around an unstable equilibrium are amplified by the self-generated electric
field. To counter this effect, we consider the construction

H[δf(t)](x) = −δE[δf(t)](x) + δH[δf(t)](x).

The goal is to cancel the destabilizing self-generated field E while introducing an auxiliary term δH to
further suppress the perturbation. Substituting this external field into (4.1) and integrating the resulting
equation against δf , we obtain

1

2

d

dt
||δf(t)||22 = −

∫
E(x)

[ ∫
δf(x, v, t)∂vδf(x, v, t)dv

]
dx−

∫
δH(x, t)

[ ∫
δf(x, v, t)∂vf(x, v, t)dv

]
dx

= −
∫
δH(x, t)

[ ∫
δf(x, v, t)∂vf(x, v)dv

]
dx.

(4.3)

The second line is obtained by using the fact that f = f + δf and
∫
δf∂vδfdv = 0. In particular, by

setting

δH[δf(t)](x) = γ

∫
δf(x, v, t)∂vf(x, v)dv, γ > 0,
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the equation (4.3) implies the decay of perturbation in time,

1

2

d

dt
||δf(t)||22 = −γ

∫ ∣∣ ∫ δf(x, v, t)∂vf(x, v)dv
∣∣2dx ≤ 0. (4.4)

This yields a convenient cancellation-based feedback controller,

H[δf(t); f ](x) = −δE[δf(t)](x) + γ

∫
δf(x, v, t)∂vf(x, v)dv, γ > 0,

δE[δf(t)](x) = −
∫∫

∂xG(x, y)δf(y, v, t)dvdy.

(4.5)

Note that this construction can be regarded as a special case of the linear integral operator (2.5) where
both the basis and weights are fixed analytically.

Although the control (4.5) does not ensure ||δf(t)|| t→∞−→ 0, it still provides satisfactory control when the
initial perturbation is already small enough Figure 4.1 presents the evolution of the L2−state perturbation
1
2 ||δf(t)||

2
2, and the electric energy 1

2 ||E(t)||22, generated by the controller (4.5) in the two-stream instability
test case (see Section 3.2 for setups). The results confirm the universality of the controller with respect
to different initial states f0. Meanwhile, a larger γ leads to faster decay in the perturbation. Figure 4.2
demonstrates the performance of the controller under noisy feedback of the form (3.2). The initial data
is set to f0 = (1+0.001 cos(15x))f(v), in consistency with the setting in Section 3.4. The results show the
notably improved robustness of the cancellation-based method as compared to the aforementioned neural
operator-based construction (see Figure 3.7).

Remark 4.1 The construction in (4.5) is not unique. For example, an alternative choice is:

δH(x, t) = γ

∫
|δf(x, v, t)|2dv∫

δf(x, v, t)∂vf(x, v)dv + ε
, (4.6)

where a small bias term ε, having the same sign as
∫
δf(x, v, t)∂vf(x, v)dv, is introduced to mitigate

severe round-off errors when the denominator is close to zero. Theoretically, the construction (4.6) yields
a sharper decay estimate,

1

2

d

dt
||δf(t)||22 = −γ||δf(t)||22 ⇝ ||δf(t)||2 ≤ ||δf(0)||22 · e−γt.

However, our numerical experiments show that the controller defined in (4.6), owing to its more intricate
structure, is more sensitive to noisy feedback than the simpler linear controller in (4.5). Consequently,
the latter is preferable in practice, as it offers lower computational cost and greater robustness in noisy
environments.

Remark 4.2 We highlight the difference between our cancellation-based feedback law and the analytical
control field obtained in [7], which was derived using a pole-elimination technique. This technique relies
on the linearized system, along with a Fourier transform-based method. In contrast, our approach is
formulated directly on the original nonlinear system and ensures analytical decay of ||δf(t)||2, a property
that is not guaranteed in [7], particularly when the dynamics extend beyond the linear regime.

4.2 Extension to higher dimensions

It is worth noting that the derivation (4.1)–(4.5) does not rely on any specific dimensionality. Hence, the
operator construction (4.5) can be directly extended to higher-dimensional phase spaces, namely,

H[δf(t)](x) = −δE[δf(t)](x) + γ

∫
Rd

δf(x,v, t)∇vf(x,v)dv,

δE[δf(t)](x) = ∇∆−1δρ(x, t).

(4.7)
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(a) L2−perturbation (b) Electric field

(c) L2−perturbation (d) Electric field

Figure 4.1: Two-stream instability. Solutions generated by the cancellation-based controller (4.5) under
different initial data. Solutions in the first row are generated with f0 = (1+0.001 cos(15x))f(v). Solutions
in the second row are generated with f0 = (1− 0.001 sin(15x) + 0.002 cos(25x))f(v).

The only added complexity arises from the numerical evaluation of δE and velocity integrals. This
universality makes the cancellation-based feedback strategy particularly appealing for plasma control
problems beyond the one-dimensional setting.

In Figures 4.3 – 4.4, we present the simulation for the two-stream instability in two dimensions, where
the two-dimensional Vlasov-Poisson equations,

∂tf(x,v, t) + v · ∇xf(x,v, t) + (E(x, t) +H(x, t))∇vf(x,v, t) = 0 ,

E(x, t) = −∇Φ(x, t), ∇ · E(x, t) = −∆Φ(x, t) = ρ(x, t)− 1 ,

ρ(x, t) =
∫
R2 f(x,v, t)dv ,

(4.8)

are solved in the domain x = (x, y) ∈ [0, 10π]2, v = (v1, v2) ∈ [−8, 8]2. The equations are discretized
using the semi-Lagrangian method with mesh grids Nx = Ny = 70, Nv1 = Nv2 = 120 and time step
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(a) σ = 2× 10−5 (0.1 · ||δf0||∞) (b) σ = 5× 10−5 (0.25 · ||δf0||∞)

(c) σ = 1× 10−4 (0.5 · ||δf0||∞) (d) σ = 2× 10−4 (1 · ||δf0||∞)

Figure 4.2: Two stream instability with noisy feedback. History of L2−state perturbation over t ∈ [0, 70].
No external field (red lines) vs cancellation-based control with γ = 1 (green lines) under varying noise
magnitudes σ.

∆t = 0.15. Periodic boundary conditions are applied at the four boundaries of the xy−region. The target
equilibrium is set to

f(v) =
1

4π
exp(− |v−v|2

2 ) +
1

4π
exp(− |v+v|2

2 ), v = (2, 2),

and the system is initialized with the perturbed data,

f0(x,v) =
(
1 + ε sin(x5 ) cos(

y
5 )
)
f(v), ε = 0.01.

The results demonstrate that in the absence of control, the perturbation grows rapidly, whereas under
the control (4.7), the system is stabilized effectively in the 2D setting.

Remark 4.3 We emphasize that the derivation of (4.5) (or (4.7)) does not rely on any assumption about
f or on linearization of the system. The only requirement is access to ∇vf(x,v) which can be precomputed
and stored. Although our experiments focus on a spatially invariant equilibrium f(v)to minimize numerical
artifacts in perturbation growth, the method is, in principle, applicable to general anisotropic equilibria.
Furthermore, the cancellation-based control can be regarded as a specific instance of the linear operator
structure (2.5), whereas the latter—with learnable basis functions and integral kernels—offers substantially
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(a) L2−perturbation (b) Electric energy

Figure 4.3: 2-D two-stream instability. History of L2−state perturbation, 1
2 ||δf(t)||

2
2, and electric energy,∫

|E(x, t)|2dx, over t ∈ [0, 30]. No external field (red lines) vs cancellation-based control (4.7) with γ = 2
(green lines).

greater flexibility. Consequently, we expect the linear LNO-based controller to generalize naturally to
spatially inhomogeneous settings, provided the operator is trained with sufficient accuracy.

Remark 4.4 Note that in multidimensional settings, the control field (4.7) is not a potential field and
therefore cannot be directly realized as an electric field. For practical implementation, it may be necessary
to combine multiple physical force fields - such as electric and magnetic fields — to approximate or achieve
the desired cancellation-based control. Exploring such composite control mechanisms will be an interesting
aspect for future investigation.

5 Conclusion

In this paper, we develop a dynamic feedback control strategy for the Vlasov–Poisson system to address
the challenge of long-time instability control in fusion energy applications. The core idea is to construct
an operator that maps state perturbations to an external control field. We propose two approaches for
constructing such an operator.

The first approach involves learning the operator using a neural network. Rather than relying on an
off-the-shelf neural operator, which would impose a significant training burden, we draw inspiration from
the linearized system and use optimal control theory to uncover the underlying structure of the ideal
operator. This insight guides the design of a low-rank neural operator architecture. To train this model,
we derive an adjoint-based gradient computation method. Compared to automatic differentiation, this
adjoint approach is often more efficient and yields more accurate gradients, reducing the overall training
cost. In the second approach, by explicitly analyzing the evolution equation satisfied by perturbations,
we perform a direct energy estimate and propose a cancellation-based control strategy that eliminates
the destabilizing component of the electric field. This leads to a novel closed-form operator, completely
removing the need for training. The resulting operator is highly robust, even under noisy feedback.

Several interesting directions lie ahead. One concerns the theoretical understanding of the cancellation-
based control defined in (4.5). While the decay estimate (4.4) suggests that the perturbation cannot
be completely eliminated, since components orthogonal to ∂vf are not directly controlled, numerical
experiments nonetheless demonstrate effective overall decay. This raises the intriguing question of whether
there is an underlying structure yet to be uncovered that explains the effectiveness of this operator. In
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(a) t = 0 (b) t = 30, no H (c) t = 30, H cancellation-based

(d) t = 0 (e) t = 30, no H (f) t = 30, H cancellation-based

Figure 4.4: 2-D two-stream instability. The first row displays surface plots of the density perturbation
δρ. The different ranges of the color bars should be noted. The second row displays the contours of
velocity distribution f(6π, 5π, v1, v2, t). The solution of the cancellation-based control (4.7) is obtained
with γ = 2.

particular, it would be interesting to show that if the initial perturbation is orthogonal to ∂vf , then this
orthogonal component still diminishes over time under the evolution governed by (4.1). Another promising
direction involves the learning-based approach. To ensure long-term effectiveness of the learned operator,
it is crucial to train it on a sufficiently rich set of perturbations, especially those likely to arise dynamically
over time. This motivates the development of strategies for self-generating representative perturbations
during training. Finally, an even more intriguing avenue is to extend the proposed strategy to the design
of external magnetic fields. Since magnetic fields are often easier to tune in practice, this extension could
significantly enhance the feasibility of real-world control implementations.
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